cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A344765 a(n) = sigma(n) - A011772(n).

Original entry on oeis.org

0, 0, 2, 0, 2, 9, 2, 0, 5, 14, 2, 20, 2, 17, 19, 0, 2, 31, 2, 27, 26, 25, 2, 45, 7, 30, 14, 49, 2, 57, 2, 0, 37, 38, 34, 83, 2, 41, 44, 75, 2, 76, 2, 52, 69, 49, 2, 92, 9, 69, 55, 59, 2, 93, 62, 72, 62, 62, 2, 153, 2, 65, 77, 0, 59, 133, 2, 110, 73, 124, 2, 132, 2, 78, 100, 84, 75, 156, 2, 122, 41, 86, 2, 176, 74, 89
Offset: 1

Views

Author

Antti Karttunen, May 30 2021

Keywords

Crossrefs

Cf. A000203, A001065, A011772, A294898, A344763, A344766, A344768 (Möbius transform), A344769.

Programs

Formula

a(n) = A000203(n) - A011772(n).
a(n) = A001065(n) + A344763(n).
a(n) = Sum_{d|n} A344768(d).
a(n) = A344769(n) - A294898(n).

A344767 Möbius transform of A011772.

Original entry on oeis.org

1, 2, 1, 4, 3, -1, 5, 8, 6, -2, 9, 1, 11, -1, 0, 16, 15, -1, 17, 7, -1, -1, 21, -1, 20, -2, 18, -4, 27, 11, 29, 32, 0, -2, 5, -5, 35, -1, -1, -8, 39, 14, 41, 17, -2, -1, 45, 1, 42, 0, 0, 23, 51, 1, -3, 33, -1, -2, 57, -12, 59, -1, 15, 64, 10, 0, 65, -4, 0, 7, 69, 48, 71, -2, -1, 33, 6, 1, 77, 33, 54, -2, 81, 27, 15, -1, 0
Offset: 1

Views

Author

Antti Karttunen, May 30 2021

Keywords

Crossrefs

Programs

  • PARI
    A344767(n) = sumdiv(n,d,moebius(n/d)*A011772(d));
    
  • Python
    from itertools import combinations
    from math import prod
    from sympy import factorint, divisors
    from sympy.ntheory.modular import crt
    from sympy.ntheory import mobius
    def A011772(n):
        plist = [p**q for p, q in factorint(2*n).items()]
        return 2*n-1 if len(plist) == 1 else min(min(crt([m,2*n//m],[0,-1])[0],crt([2*n//m,m],[0,-1])[0]) for m in (prod(d) for l in range(1,len(plist)//2+1) for d in combinations(plist,l)))
    def A344767(n): return sum(mobius(n//d)*A011772(d) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 20 2021

Formula

a(n) = Sum_{d|n} A008683(n/d) * A011772(d).
Showing 1-2 of 2 results.