cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A344765 a(n) = sigma(n) - A011772(n).

Original entry on oeis.org

0, 0, 2, 0, 2, 9, 2, 0, 5, 14, 2, 20, 2, 17, 19, 0, 2, 31, 2, 27, 26, 25, 2, 45, 7, 30, 14, 49, 2, 57, 2, 0, 37, 38, 34, 83, 2, 41, 44, 75, 2, 76, 2, 52, 69, 49, 2, 92, 9, 69, 55, 59, 2, 93, 62, 72, 62, 62, 2, 153, 2, 65, 77, 0, 59, 133, 2, 110, 73, 124, 2, 132, 2, 78, 100, 84, 75, 156, 2, 122, 41, 86, 2, 176, 74, 89
Offset: 1

Views

Author

Antti Karttunen, May 30 2021

Keywords

Crossrefs

Cf. A000203, A001065, A011772, A294898, A344763, A344766, A344768 (Möbius transform), A344769.

Programs

Formula

a(n) = A000203(n) - A011772(n).
a(n) = A001065(n) + A344763(n).
a(n) = Sum_{d|n} A344768(d).
a(n) = A344769(n) - A294898(n).

A344763 a(n) = n - A011772(n).

Original entry on oeis.org

0, -1, 1, -3, 1, 3, 1, -7, 1, 6, 1, 4, 1, 7, 10, -15, 1, 10, 1, 5, 15, 11, 1, 9, 1, 14, 1, 21, 1, 15, 1, -31, 22, 18, 21, 28, 1, 19, 27, 25, 1, 22, 1, 12, 36, 23, 1, 16, 1, 26, 34, 13, 1, 27, 45, 8, 39, 30, 1, 45, 1, 31, 36, -63, 40, 55, 1, 52, 46, 50, 1, 9, 1, 38, 51, 20, 56, 66, 1, 16, 1, 42, 1, 36, 51, 43, 58, 56, 1, 55
Offset: 1

Views

Author

Antti Karttunen, May 30 2021

Keywords

Crossrefs

Programs

  • Mathematica
    A011772[n_] := Module[{m = 1}, While[!IntegerQ[(m(m+1))/(2n)], m++]; m];
    a[n_] := n - A011772[n];
    Array[a, 100] (* Jean-François Alcover, Jun 12 2021 *)
  • PARI
    A344763(n) = (n-A011772(n));
    
  • Python
    from sympy.ntheory.modular import crt
    from sympy import factorint
    from math import prod
    from itertools import combinations
    def A344763(n):
        plist = tuple(p**q for p, q in factorint(2*n).items())
        return 1-n if len(plist) == 1 else n-int(min(min(crt((m,2*n//m),(0,-1))[0],crt((2*n//m,m),(0,-1))[0]) for m in (prod(d) for l in range(1,len(plist)//2+1) for d in combinations(plist,l)))) # Chai Wah Wu, Jun 15 2022

Formula

a(n) = n - A011772(n).
a(n) = A344765(n) - A001065(n).
a(2^k) = 1-2^k. - Chai Wah Wu, Jun 15 2022
Showing 1-2 of 2 results.