A344770 Ordinal transform of A011772.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 2, 1, 3, 1, 4, 1, 1, 2, 2, 1, 4, 1, 1, 3, 5, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 6, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 2, 1, 2, 3, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 2, 1, 2, 3, 1, 4, 1, 4, 1, 1, 1, 2, 2
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
A011772[n_] := For[m = 1, True, m++, If[Divisible[m(m+1)/2, n], Return[m]]]; b[_] = 0; a[n_] := a[n] = With[{t = A011772[n]}, b[t] = b[t]+1]; Array[a, 105] (* Jean-François Alcover, Dec 21 2021 *)
-
PARI
up_to = 65537; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772 v344770 = ordinal_transform(vector(up_to,n,A011772(n))); A344770(n) = v344770[n];
Formula
a(n) >= A344590(n).
Comments