cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344770 Ordinal transform of A011772.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 2, 1, 3, 1, 4, 1, 1, 2, 2, 1, 4, 1, 1, 3, 5, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 6, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 2, 1, 2, 3, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 2, 1, 2, 3, 1, 4, 1, 4, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, May 30 2021

Keywords

Comments

Number of values of k, 1 <= k <= n, with A011772(k) = A011772(n).
a(n) = 1 for all powers of primes, A000961. Ones occur on some other positions as well: 15, 22, 35, 38, 42, 44, 45, 46, 51, 52, 54, 65, ...

Crossrefs

Programs

  • Mathematica
    A011772[n_] := For[m = 1, True, m++, If[Divisible[m(m+1)/2, n], Return[m]]];
    b[_] = 0;
    a[n_] := a[n] = With[{t = A011772[n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 21 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772
    v344770 = ordinal_transform(vector(up_to,n,A011772(n)));
    A344770(n) = v344770[n];

Formula

a(n) >= A344590(n).