A344772 Ordinal transform of infinitary phi, A091732.
1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 2, 3, 2, 1, 4, 1, 4, 2, 2, 1, 4, 1, 2, 1, 3, 2, 3, 1, 3, 4, 5, 1, 6, 1, 2, 1, 2, 1, 3, 1, 5, 2, 2, 1, 4, 2, 4, 3, 2, 1, 6, 1, 4, 2, 1, 3, 2, 1, 4, 1, 7, 1, 8, 1, 4, 5, 1, 2, 9, 1, 3, 1, 3, 1, 5, 1, 2, 1, 5, 1, 3, 2, 2, 4, 2, 3, 6, 1, 6, 2, 4, 1, 4, 1, 6, 7
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], 1])); iphi[1] = 1; iphi[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) - 1); b[_] = 0; a[n_] := a[n] = With[{t = iphi[n]}, b[t] = b[t] + 1]; Array[a, 105] (* Jean-François Alcover, Dec 27 2021, after Amiram Eldar in A091732 *)
-
PARI
up_to = 65537; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; ispow2(n) = (n && !bitand(n,n-1)); A302777(n) = ispow2(isprimepower(n)); A091732(n) = { my(m=1); while(n > 1, fordiv(n, d, if((d
A302777(n/d), m *= ((n/d)-1); n = d; break))); (m); }; v344772 = ordinal_transform(vector(up_to,n,A091732(n))); A344772(n) = v344772[n];
Comments