A344783 Numbers k such that 1 + Sum_{i=1..k} floor(k/i)*(2^i) is a prime number.
1, 3, 4, 7, 18, 25, 26, 30, 40, 50, 95, 150, 348, 694, 1052, 1222, 1808, 2567, 4917, 5399, 7438, 10720, 12152, 30412, 38313, 53620, 121419, 123523
Offset: 1
Examples
1 is a term since 1 + Sum_{i=1..1} floor(k/i)*(2^i) = 1 + 2 = 3 is a prime. 3 is a term since 1 + Sum_{i=1..3} floor(k/i)*(2^i) = 1 + 6 + 4 + 8 = 19 is a prime.
Programs
-
Mathematica
Select[Range[100], PrimeQ[1 + Sum[Floor[#/i]*2^i,{i, 1, #}]] &]
Extensions
a(27)-a(28) from Michael S. Branicky, Sep 23 2024
Comments