A344789 Number of partitions of the n-th nonprime number into a nonprime number of nonprime parts.
1, 2, 2, 2, 4, 3, 6, 8, 11, 11, 19, 27, 32, 37, 55, 63, 78, 88, 108, 149, 204, 232, 274, 313, 371, 497, 556, 654, 864, 1135, 1267, 1476, 1915, 2142, 2474, 2754, 3182, 4070, 4528, 5190, 5769, 6594, 8347, 10530, 11666, 13240, 14657, 16597, 20747, 22924, 25854
Offset: 1
Keywords
Examples
a(5) = 4: [9], [6,1,1,1], [4,1,1,1,1,1], [1,1,1,1,1,1,1,1,1]. a(6) = 3: [10], [4,4,1,1], [1,1,1,1,1,1,1,1,1,1]. a(7) = 6: [12], [9,1,1,1], [6,4,1,1], [4,4,1,1,1,1], [4,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..5000
Programs
-
Maple
c:= proc(n) option remember; local k; if n=1 then 1 else for k from 1+c(n-1) while isprime(k) do od; k fi end: h:= proc(n) option remember; `if`(isprime(n), h(n-1), n) end: b:= proc(n, i, c) option remember; `if`(n=0 or i=1, `if`(isprime( c+n), 0, 1), b(n-i, h(min(n-i, i)), c+1)+b(n, h(i-1), c)) end: a:= n-> b(c(n)$2, 0): seq(a(n), n=1..55);
-
Mathematica
c[n_] := c[n] = Module[{k}, If[n == 1, 1, For[k = 1+c[n-1], PrimeQ[k], k++]; k]]; h[n_] := h[n] = If[PrimeQ[n], h[n-1], n]; b[n_, i_, c_] := b[n, i, c] = If[n == 0 || i == 1, If[PrimeQ[ c+n], 0, 1], b[n-i, h[Min[n-i, i]], c+1] + b[n, h[i-1], c]]; a[n_] := b[c[n], c[n], 0]; Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Sep 08 2022, after Alois P. Heinz *)