A344811 Numbers that are the sum of six squares in seven or more ways.
60, 65, 68, 69, 77, 78, 81, 84, 86, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136
Offset: 1
Keywords
Examples
65 = 1^2 + 1^2 + 1^2 + 1^2 + 5^2 + 6^2 = 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 7^2 = 1^2 + 1^2 + 2^2 + 3^2 + 5^2 + 5^2 = 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 6^2 = 1^2 + 2^2 + 2^2 + 2^2 + 4^2 + 6^2 = 2^2 + 2^2 + 3^2 + 4^2 + 4^2 + 4^2 = 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 5^2 so 65 is a term.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..1000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**2 for x in range(1, 1000)] for pos in cwr(power_terms, 6): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 7]) for x in range(len(rets)): print(rets[x])