A344812 Numbers that are the sum of six squares in eight or more ways.
78, 81, 84, 86, 87, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142
Offset: 1
Keywords
Examples
81 = 1^2 + 1^2 + 1^2 + 2^2 + 5^2 + 7^2 = 1^2 + 1^2 + 2^2 + 5^2 + 5^2 + 5^2 = 1^2 + 1^2 + 3^2 + 3^2 + 5^2 + 6^2 = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 8^2 = 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 7^2 = 1^2 + 4^2 + 4^2 + 4^2 + 4^2 + 4^2 = 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 7^2 = 2^2 + 2^2 + 4^2 + 4^2 + 4^2 + 5^2 = 2^2 + 3^2 + 3^2 + 3^2 + 5^2 + 5^2 = 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 6^2 so 81 is a term.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..1000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**2 for x in range(1, 1000)] for pos in cwr(power_terms, 6): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 8]) for x in range(len(rets)): print(rets[x])
Formula
Conjectures from Chai Wah Wu, Jan 05 2024: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 27.
G.f.: x*(-x^26 + x^25 - x^21 + x^20 - 2*x^7 + x^6 + x^5 - x^4 - x^3 - 75*x + 78)/(x - 1)^2. (End)