cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344826 Integers k such that k/A097621(k) is an integer.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 891, 1584, 1782, 3564, 4032, 4455, 4752, 7920, 8910, 17820, 20160, 22275, 23760, 44550, 49896, 86400, 89100, 100800, 118800, 249480, 349272, 399168, 694008, 1097712, 1746360, 1778400, 1995840, 2181168, 2774304, 2794176, 3470040
Offset: 1

Views

Author

Michel Marcus, May 29 2021, after a suggestion from Allan C. Wechsler

Keywords

Comments

Allan C. Wechsler remarks that one can derive larger terms from existing terms. For instance, k = 5552064 has q = k/A097621(k) = 18. So multiplying 5552064 by 31 = A000961(18) will give a new term with q = 31.
More precisely, if k = a(n) has q = A343886(k) and m = A000961(q) such that gcd(k, m) = 1, then k*m is also a term. We could call "primitive" those terms not derived from a smaller term in this way. All the listed terms are primitive, but a({35, 36, 38, 42, 43}) allow the sequence to be extended to five larger non-primitive terms. The second and fourth one, having q = 17 resp. q = 23, both lead to a whole chain of many new terms. - M. F. Hasler, Jun 15 2021

Crossrefs

Cf. A000961, A095874, A097621, A127724, A343886 (the ratios k/A097621(k)).

Programs

  • PARI
    f(n) = if(isprimepower(n), sum(i=1, logint(n, 2), primepi(sqrtnint(n, i)))+1, n==1); \\ A095874
    ff(n) = my(fr=factor(n)); for (k=1, #fr~, fr[k,1] = f(fr[k,1]^fr[k,2]); fr[k,2] = 1); factorback(fr); \\ A097621
    isok(k) = denominator(k/ff(k)) == 1;
    
  • PARI
    mappp(nn) = {my(map = Map()); mapput(map, 1, 1); my(nb=1); for (n=2, nn, if (isprimepower(n), nb++; mapput(map, n, nb));); map;}
    ff(n, map) = my(fr=factor(n)); for (k=1, #fr~, fr[k, 1] = mapget(map, fr[k, 1]^fr[k, 2]); fr[k, 2] = 1); factorback(fr); \\ A097621
    wa(na, nb) = {my(map = mappp(nb)); for (k=na, nb, if (denominator(k/ff(k, map)) == 1, print1(k, ", ")););}
    wa(1, 10^8)
    
  • PARI
    is_A344826(n)=!(n%A097621(n))
    extend(n)=n*if(gcd(n, n=A000961(n/A097621(n)))==1,n) \\ Return the larger non-primitive term "derived" from a term n = a(k) with gcd(n,q) = 1, cf. COMMENTS, or zero if gcd(n,q) > 1, i.e., it cannot be "extended" that way. This allows the production of (infinitely?) many new terms from the existing ones. - M. F. Hasler, Jun 15 2021