A344835 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = (n * 2^max(0, w(k)-w(n))) OR (k * 2^max(0, w(n)-w(k))) (where OR denotes the bitwise OR operator and w = A070939).
0, 1, 1, 2, 1, 2, 3, 2, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 3, 4, 5, 6, 5, 4, 3, 4, 5, 6, 7, 6, 5, 6, 6, 5, 6, 7, 8, 7, 6, 7, 4, 7, 6, 7, 8, 9, 8, 7, 6, 5, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 6, 7, 8, 9, 10, 11, 10, 9, 12, 7, 7, 7, 7, 12, 9, 10, 11, 12, 11, 10, 13, 8, 7, 6, 7, 8, 13, 10, 11, 12
Offset: 0
Examples
Array T(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ---+---------------------------------------------------------------- 0| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1| 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2| 2 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 3| 3 3 3 3 6 7 6 7 12 13 14 15 12 13 14 15 4| 4 4 4 6 4 5 6 7 8 9 10 11 12 13 14 15 5| 5 5 5 7 5 5 7 7 10 11 10 11 14 15 14 15 6| 6 6 6 6 6 7 6 7 12 13 14 15 12 13 14 15 7| 7 7 7 7 7 7 7 7 14 15 14 15 14 15 14 15 8| 8 8 8 12 8 10 12 14 8 9 10 11 12 13 14 15 9| 9 9 9 13 9 11 13 15 9 9 11 11 13 13 15 15 10| 10 10 10 14 10 10 14 14 10 11 10 11 14 15 14 15 11| 11 11 11 15 11 11 15 15 11 11 11 11 15 15 15 15 12| 12 12 12 12 12 14 12 14 12 13 14 15 12 13 14 15 13| 13 13 13 13 13 15 13 15 13 13 15 15 13 13 15 15 14| 14 14 14 14 14 14 14 14 14 15 14 15 14 15 14 15 15| 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10010
- Rémy Sigrist, Colored representation of the table for n, k < 2^10
Crossrefs
Programs
-
PARI
T(n, k, op=bitor, w=m->#binary(m)) = { op(n*2^max(0, w(k)-w(n)), k*2^max(0, w(n)-w(k))) }
Formula
T(n, k) = T(k, n).
T(m, T(n, k)) = T(T(m, n), k).
T(n, n) = n.
T(n, 0) = n.
T(n, 1) = max(1, n).
Comments