A344846 Sum of the prime numbers appearing along the border of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows.
0, 5, 12, 23, 44, 80, 136, 195, 225, 329, 320, 694, 791, 808, 899, 953, 1378, 2485, 1905, 2152, 2898, 3364, 2577, 4913, 4061, 5589, 4638, 6978, 5432, 10814, 5305, 10157, 9135, 10507, 10976, 15342, 5149, 14352, 16891, 17827, 11327, 26086, 14738, 19337, 23838, 30784, 16701
Offset: 1
Keywords
Examples
[1 2 3 4 5] [1 2 3 4] [6 7 8 9 10] [1 2 3] [5 6 7 8] [11 12 13 14 15] [1 2] [4 5 6] [9 10 11 12] [16 17 18 19 20] [1] [3 4] [7 8 9] [13 14 15 16] [21 22 23 24 25] ------------------------------------------------------------------------ n 1 2 3 4 5 ------------------------------------------------------------------------ a(n) 0 5 12 23 44 ------------------------------------------------------------------------
Programs
-
Mathematica
Table[Sum[(n^2 - k + 1) (PrimePi[n^2 - k + 1] - PrimePi[n^2 - k]) + k (PrimePi[k] - PrimePi[k - 1]), {k, n}] + Sum[(n*j + 1) (PrimePi[n*j + 1] - PrimePi[n*j]), {j, n - 2}], {n, 60}]
Formula
a(n) = Sum_{k=1..n} ((n^2-k+1) * c(n^2-k+1) + k * c(k)) + Sum_{k=1..n-2} ((n*k+1) * c(n*k+1)), where c(n) is the prime characteristic.