cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344846 Sum of the prime numbers appearing along the border of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows.

Original entry on oeis.org

0, 5, 12, 23, 44, 80, 136, 195, 225, 329, 320, 694, 791, 808, 899, 953, 1378, 2485, 1905, 2152, 2898, 3364, 2577, 4913, 4061, 5589, 4638, 6978, 5432, 10814, 5305, 10157, 9135, 10507, 10976, 15342, 5149, 14352, 16891, 17827, 11327, 26086, 14738, 19337, 23838, 30784, 16701
Offset: 1

Views

Author

Wesley Ivan Hurt, May 29 2021

Keywords

Examples

			                                                      [1   2  3  4  5]
                                      [1   2  3  4]   [6   7  8  9 10]
                            [1 2 3]   [5   6  7  8]   [11 12 13 14 15]
                   [1 2]    [4 5 6]   [9  10 11 12]   [16 17 18 19 20]
           [1]     [3 4]    [7 8 9]   [13 14 15 16]   [21 22 23 24 25]
------------------------------------------------------------------------
  n         1        2         3            4                 5
------------------------------------------------------------------------
  a(n)      0        5         12          23                44
------------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n^2 - k + 1) (PrimePi[n^2 - k + 1] - PrimePi[n^2 - k]) + k (PrimePi[k] - PrimePi[k - 1]), {k, n}] + Sum[(n*j + 1) (PrimePi[n*j + 1] - PrimePi[n*j]), {j, n - 2}], {n, 60}]

Formula

a(n) = Sum_{k=1..n} ((n^2-k+1) * c(n^2-k+1) + k * c(k)) + Sum_{k=1..n-2} ((n*k+1) * c(n*k+1)), where c(n) is the prime characteristic.