A344873 Irregular triangle read by rows. T(n,k) is the number of n X n matrices over GF(2) whose characteristic polynomial is a product of k distinct squarefree irreducible factors.
1, 0, 2, 0, 2, 6, 0, 48, 112, 0, 4032, 11520, 6720, 0, 1935360, 4952064, 2856960, 0, 2879815680, 9558687744, 7871496192, 0, 23222833643520, 66748107718656, 60247322394624, 15604761231360, 0, 629183972848435200, 2137709262359494656, 2101670528396820480, 465681743169454080
Offset: 0
Examples
Triangle begins: 1; 0, 2; 0, 2, 6; 0, 48, 112; 0, 4032, 11520, 6720; 0, 1935360, 4952064, 2856960; 0, 2879815680, 9558687744, 7871496192; 0, 23222833643520, 66748107718656, 60247322394624, 15604761231360;
Links
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
Programs
-
Mathematica
nn = 8; A001037 = Table[1/n Sum[MoebiusMu[n/d] 2^d, {d, Divisors[n]}], {n, 1, nn}];Prepend[Drop[Map[Prepend[#, 0] &,Map[Select[#, # > 0 &] &,Table[Product[2^n - 2^i, {i, 0, n - 1}], {n, 0,nn}] CoefficientList[Series[Product[(1 + v u^i/(2^i - 1))^A001037[[i]], {i, 1, nn}], {u, 0, nn}], {u, v}]]], 1], {1}] // Grid