cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A344876 a(n) = A344875(n) - A011772(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 0, 0, 0, 8, 0, 6, 0, 11, 3, 0, 0, 16, 0, 13, 6, 19, 0, 15, 0, 24, 0, 35, 0, 9, 0, 0, 9, 32, 10, 48, 0, 35, 12, 45, 0, 16, 0, 38, 23, 43, 0, 30, 0, 48, 15, 45, 0, 51, 30, 42, 18, 56, 0, 41, 0, 59, 21, 0, 23, 49, 0, 96, 21, 52, 0, 57, 0, 72, 24, 70, 39, 60, 0, 60, 0, 80, 0, 36, 30, 83, 27, 118, 0, 61, 59, 131
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2021

Keywords

Comments

Apparently A000961 gives the positions of zeros.

Crossrefs

Programs

  • Mathematica
    A011772[n_] := Module[{m = 1}, While[Not[IntegerQ[m(m+1)/(2n)]], m++]; m];
    A344875[n_] := Product[{p, e} = pe; If[p == 2, 2^(1+e)-1, p^e-1], {pe, FactorInteger[n]}];
    a[n_] := If[n == 1, 0, A344875[n] - A011772[n]];
    Array[a, 100] (* Jean-François Alcover, Jun 12 2021 *)
  • PARI
    A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772
    A344875(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^(f[2, i]+(2==f[1, i]))-1)); };
    A344876(n) = (A344875(n)-A011772(n));

Formula

a(n) = A344875(n) - A011772(n).
a(n) >= A344976(n).
Showing 1-1 of 1 results.