A344877 a(n) = gcd(n, A344875(n)), where A344875 is multiplicative with a(2^e) = 2^(1+e) - 1, and a(p^e) = p^e -1 for odd primes p.
1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 6, 1, 4, 3, 2, 1, 6, 1, 2, 1, 14, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 20, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 6, 5, 2, 3, 2, 1, 4, 1, 2, 3, 1, 1, 6, 1, 4, 1, 2, 1, 24, 1, 2, 3, 2, 1, 6, 1, 4, 1, 2, 1, 84, 1, 2, 1, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 1, 4, 1, 6, 1, 4, 3
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Programs
-
Mathematica
f[2, e_] := 2^(e + 1) - 1; f[p_, e_] := p^e - 1; a[1] = 1; a[n_] := GCD[n, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Jun 03 2021 *)
-
PARI
A344875(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^(f[2, i]+(2==f[1, i]))-1)); }; A344877(n) = gcd(n, A344875(n));