A344878 a(n) is the least common multiple of numbers (2^(1+e2))-1 and those in the set (p_i^e_i)-1, when the odd part of n = Product (p_i^e_i), and e2 is the 2-adic valuation of n.
1, 3, 2, 7, 4, 6, 6, 15, 8, 12, 10, 14, 12, 6, 4, 31, 16, 24, 18, 28, 6, 30, 22, 30, 24, 12, 26, 42, 28, 12, 30, 63, 10, 48, 12, 56, 36, 18, 12, 60, 40, 6, 42, 70, 8, 66, 46, 62, 48, 24, 16, 84, 52, 78, 20, 30, 18, 84, 58, 28, 60, 30, 24, 127, 12, 30, 66, 112, 22, 12, 70, 120, 72, 36, 24, 126, 30, 12, 78, 124, 80, 120
Offset: 1
Keywords
Links
Programs
-
Mathematica
a[n_] := If[n == 1, 1, Module[{p, e}, LCM @@ Table[{p, e} = pe; (p^(e + If[p == 2, 1, 0])) - 1, {pe, FactorInteger[n]}]]]; Array[a, 100] (* Jean-François Alcover, Jun 12 2021 *)
-
PARI
A344878(n) = if(1==n,n, my(f=factor(n)~); lcm(vector(#f, i, (f[1, i]^(f[2, i]+(2==f[1, i]))-1))));
-
Python
from math import lcm from sympy import factorint def A344878(n): return lcm(*(p**(e+int(p==2))-1 for p, e in factorint(n).items())) # Chai Wah Wu, Jun 15 2022