cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A344875 Multiplicative with a(2^e) = 2^(1+e) - 1, and a(p^e) = p^e - 1 for odd primes p.

Original entry on oeis.org

1, 3, 2, 7, 4, 6, 6, 15, 8, 12, 10, 14, 12, 18, 8, 31, 16, 24, 18, 28, 12, 30, 22, 30, 24, 36, 26, 42, 28, 24, 30, 63, 20, 48, 24, 56, 36, 54, 24, 60, 40, 36, 42, 70, 32, 66, 46, 62, 48, 72, 32, 84, 52, 78, 40, 90, 36, 84, 58, 56, 60, 90, 48, 127, 48, 60, 66, 112, 44, 72, 70, 120, 72, 108, 48, 126, 60, 72, 78, 124, 80, 120
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[2, e_] := 2^(e + 1) - 1; f[p_, e_] := p^e - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jun 03 2021 *)
  • PARI
    A344875(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^(f[2, i]+(2==f[1, i]))-1)); };
    
  • Python
    from math import prod
    from sympy import factorint
    def A344875(n): return prod((p**(1+e) if p == 2 else p**e)-1 for p, e in factorint(n).items()) # Chai Wah Wu, Jun 01 2022

Formula

a(n) = A344878(n) * A344879(n).
Multiplicative with a(p^e) = A153151(p^e). - Antti Karttunen, Jul 01 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (4/5) * Product_{p prime} (1 - 1/(p*(p+1))) = (4/5) * A065463 = 0.563553... . - Amiram Eldar, Nov 18 2022

A344878 a(n) is the least common multiple of numbers (2^(1+e2))-1 and those in the set (p_i^e_i)-1, when the odd part of n = Product (p_i^e_i), and e2 is the 2-adic valuation of n.

Original entry on oeis.org

1, 3, 2, 7, 4, 6, 6, 15, 8, 12, 10, 14, 12, 6, 4, 31, 16, 24, 18, 28, 6, 30, 22, 30, 24, 12, 26, 42, 28, 12, 30, 63, 10, 48, 12, 56, 36, 18, 12, 60, 40, 6, 42, 70, 8, 66, 46, 62, 48, 24, 16, 84, 52, 78, 20, 30, 18, 84, 58, 28, 60, 30, 24, 127, 12, 30, 66, 112, 22, 12, 70, 120, 72, 36, 24, 126, 30, 12, 78, 124, 80, 120
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Module[{p, e}, LCM @@ Table[{p, e} = pe;
         (p^(e + If[p == 2, 1, 0])) - 1, {pe, FactorInteger[n]}]]];
    Array[a, 100] (* Jean-François Alcover, Jun 12 2021 *)
  • PARI
    A344878(n) = if(1==n,n, my(f=factor(n)~); lcm(vector(#f, i, (f[1, i]^(f[2, i]+(2==f[1, i]))-1))));
    
  • Python
    from math import lcm
    from sympy import factorint
    def A344878(n): return lcm(*(p**(e+int(p==2))-1 for p, e in factorint(n).items())) # Chai Wah Wu, Jun 15 2022

Formula

If n = Product (p_i^e_i), then a(n) = LCM of values (p_i^(e_i+[p==2]))-1, where [ ] is the Iverson bracket.
a(n) = lcm(A038712(n), a(A000265(n))).
a(n) = A344875(n) / A344879(n).

A345045 a(n) = A047994(n) / A345044(n), where A047994(n) is multiplicative with a(p^e) = p^e - 1, and A345044(n) gives the least common multiple of the same factors.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 4, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 2, 2, 1, 1, 1, 1, 1, 6, 4, 1, 2, 1, 1, 4, 6, 1, 2, 1, 2, 1, 1, 1, 2, 3, 1, 2, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2021

Keywords

Crossrefs

Programs

  • PARI
    A345045(n) = { my(f=factor(n)~, g=vector(#f, i, (f[1, i]^f[2, i])-1)); factorback(g)/lcm(g); };

Formula

a(n) = A047994(n) / A345044(n).
Showing 1-3 of 3 results.