cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A006288 Loxton-van der Poorten sequence: base-4 representation contains only -1, 0, +1.

Original entry on oeis.org

0, 1, 3, 4, 5, 11, 12, 13, 15, 16, 17, 19, 20, 21, 43, 44, 45, 47, 48, 49, 51, 52, 53, 59, 60, 61, 63, 64, 65, 67, 68, 69, 75, 76, 77, 79, 80, 81, 83, 84, 85, 171, 172, 173, 175, 176, 177, 179, 180, 181, 187, 188, 189, 191, 192, 193, 195, 196, 197, 203, 204, 205, 207, 208, 209
Offset: 0

Views

Author

Keywords

Examples

			1*4^2 + 0*4^1 + (-1)*4^0 = 15, so 15 is in sequence.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A344892 (in base 4), A344893 (morphism).

Programs

  • PARI
    a(n)=if(n<2,n>0,4*a((n+1)\3)+(n+1)%3-1) \\ Ralf Stephan, Jan 19 2014
    
  • PARI
    a(n) = my(v=digits(n,3),prev=0); forstep(i=#v,1,-1, prev=(v[i]+=(v[i]>(prev<2)))); fromdigits(v,4); \\ Kevin Ryde, Jun 03 2021

Formula

Recurrence: a(3n) = 4a(n), a(3n-1) = 4a(n)-1, a(3n+1) = 4a(n)+1, starting 0,1. - Ralf Stephan, Jan 19 2014

Extensions

Offset changed to 0 and example added by Ralf Stephan, Jan 19 2014

A344893 Fixed point of the morphism 1->1321, 2->0021, 3->1300, 0->0000 starting from 1.

Original entry on oeis.org

1, 3, 2, 1, 1, 3, 0, 0, 0, 0, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 0, 0, 0, 0, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 0, 0, 0, 0, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 0
Offset: 0

Views

Author

Kevin Ryde, Jun 01 2021

Keywords

Comments

Loxton and van der Poorten give this morphism as a way to identify those n which can be represented in base 4 using only digits -1,0,+1 (A006288): n is a term of A006288 iff a(n) = 1 or 3.

Crossrefs

Cf. A006288, A344892, A007090 (base 4).

Programs

  • Mathematica
    Nest[Flatten[ReplaceAll[#,{0->{0,0,0,0},1->{1,3,2,1},2->{0,0,2,1},3->{1,3,0,0}}]]&,{1},4] (* Paolo Xausa, Nov 09 2023 *)
  • PARI
    my(table=[9,8,9,0,0,8,6,2,4]); a(n) = my(s=2); if(n, forstep(i=bitor(logint(n,2),1),0,-1, (s=table[s-bittest(n,i)])||break)); s>>1;

Formula

a(n) = 0 if n in base 4 has a digit pair 12, 13, 20, or 21; otherwise a(n) = 1,3,2,1 according as n == 0,1,2,3 (mod 4).
Showing 1-2 of 2 results.