cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A147991 Sequence S such that 1 is in S and if x is in S, then 3x-1 and 3x+1 are in S.

Original entry on oeis.org

1, 2, 4, 5, 7, 11, 13, 14, 16, 20, 22, 32, 34, 38, 40, 41, 43, 47, 49, 59, 61, 65, 67, 95, 97, 101, 103, 113, 115, 119, 121, 122, 124, 128, 130, 140, 142, 146, 148, 176, 178, 182, 184, 194, 196, 200, 202, 284, 286, 290, 292, 302, 304, 308, 310, 338, 340, 344, 346
Offset: 1

Views

Author

Clark Kimberling, Dec 07 2008

Keywords

Comments

Positive numbers that can be written in balanced ternary without a 0 trit. - J. Hufford, Jun 30 2015
Let S be the set of terms. Define c: Z -> P(R) so that c(m) is the translated Cantor ternary set spanning [m-0.5, m+0.5], and let C be the union of c(m) for all m in S U {0} U -S. C is the closure of the translated Cantor ternary set spanning [-0.5, 0.5] under multiplication by 3. - Peter Munn, Jan 31 2022

Examples

			0th generation: 1;
1st generation: 2 4;
2nd generation: 5 7 11 13.
		

Crossrefs

Cf. A006288, A351243 (non-quotients).
See also the related sequences listed in A191106.
One half of each position > 0 where A307744 sets or equals a record.
Cf. A030300.
Column k=3 of A360099.

Programs

  • Haskell
    import Data.Set (singleton, insert, deleteFindMin)
    a147991 n = a147991_list !! (n-1)
    a147991_list = f $ singleton 1 where
       f s = m : (f $ insert (3*m - 1) $ insert (3*m + 1) s')
             where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Feb 21 2012, Jan 23 2011
    
  • Maple
    A147991:= proc(n) option remember; if n::even then 3*procname(n/2)-1 else 3*procname((n-1)/2)+1 fi end proc:
    A147991(1):= 1:
    [seq](A147991(i),i=1..1000); # Robert Israel, May 05 2014
  • Mathematica
    nn=346; s={1}; While[s1=Select[Union[s, 3*s-1, 3*s+1], # <= nn &];  s != s1, s=s1]; s
    a[ n_] := If[ n < -1 || n > 0, 3 a[Quotient[n, 2]] - (-1)^Mod[n, 2], 0]; (* Michael Somos, Dec 22 2018 *)
  • PARI
    {a(n) = if( n<-1 || n>0, 3*a(n\2) - (-1)^(n%2), 0)}; /* Michael Somos, Dec 22 2018 */
    
  • PARI
    a(n) = fromdigits(apply(b->if(b,1,-1),binary(n)), 3); \\ Kevin Ryde, Feb 06 2022

Formula

a(n) = 3*a(n/2) - 1 if n>=2 is even, 3*a((n-1)/2) + 1 if n is odd, a(0)=0. - Robert Israel, May 05 2014
G.f. g(x) satisfies g(x) = 3*(x+1)*g(x^2) + x/(1+x). - Robert Israel, May 05 2014
Product_{j=0..n-1} cos(3^j) = 2^(-n+1)*Sum_{i=2^(n-1)..2^n-1} cos(a(i)). - Gevorg Hmayakyan, Jan 15 2017
Sum_{i=2^(n-1)..2^n-1} cos(a(i)/3^(n-1)*Pi/2) = 0. - Gevorg Hmayakyan, Jan 15 2017
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Dec 22 2018
For n > 0, A307744(2*a(2n)) = A307744(2*a(2n+1)) = A307744(2*a(n)) + 1. - Peter Munn, Jan 31 2022
a(n) mod 2 = A030300(n). - Alois P. Heinz, Jan 29 2023

A344892 Loxton-van der Poorten sequence: base-4 representation contains only -1, 0, +1, converted to ordinary base-4 digits 0,1,2,3.

Original entry on oeis.org

0, 1, 3, 10, 11, 23, 30, 31, 33, 100, 101, 103, 110, 111, 223, 230, 231, 233, 300, 301, 303, 310, 311, 323, 330, 331, 333, 1000, 1001, 1003, 1010, 1011, 1023, 1030, 1031, 1033, 1100, 1101, 1103, 1110, 1111, 2223, 2230, 2231, 2233, 2300, 2301, 2303, 2310, 2311
Offset: 0

Views

Author

Kevin Ryde, Jun 01 2021

Keywords

Comments

Loxton and van der Poorten's morphism (see A344893), or the way -1 digits cause borrows, shows that this sequence is base 4 digit strings with no digit pair 12, 13, 20, or 21, and least significant digit not 2.
The least significant digit can be any of 0,1,3, then each successive higher digit has three choices: 0,1,3 above a 0 or 1, or 0,2,3 above a 2 or 3. This allows a(n) to be calculated by mapping from the ternary digits of n to these choices, from least to most significant digit.

Crossrefs

Cf. A006288 (decimal), A344893 (morphism), A007090 (base 4).

Programs

  • PARI
    a(n) = my(v=digits(n,3),prev=0); forstep(i=#v,1,-1, prev=(v[i]+=(v[i]>(prev<2)))); fromdigits(v);

Formula

a(n) = A007090(A006288(n)).

A344893 Fixed point of the morphism 1->1321, 2->0021, 3->1300, 0->0000 starting from 1.

Original entry on oeis.org

1, 3, 2, 1, 1, 3, 0, 0, 0, 0, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 0, 0, 0, 0, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 0, 0, 0, 0, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 0
Offset: 0

Views

Author

Kevin Ryde, Jun 01 2021

Keywords

Comments

Loxton and van der Poorten give this morphism as a way to identify those n which can be represented in base 4 using only digits -1,0,+1 (A006288): n is a term of A006288 iff a(n) = 1 or 3.

Crossrefs

Cf. A006288, A344892, A007090 (base 4).

Programs

  • Mathematica
    Nest[Flatten[ReplaceAll[#,{0->{0,0,0,0},1->{1,3,2,1},2->{0,0,2,1},3->{1,3,0,0}}]]&,{1},4] (* Paolo Xausa, Nov 09 2023 *)
  • PARI
    my(table=[9,8,9,0,0,8,6,2,4]); a(n) = my(s=2); if(n, forstep(i=bitor(logint(n,2),1),0,-1, (s=table[s-bittest(n,i)])||break)); s>>1;

Formula

a(n) = 0 if n in base 4 has a digit pair 12, 13, 20, or 21; otherwise a(n) = 1,3,2,1 according as n == 0,1,2,3 (mod 4).

A083905 G.f.: 1/(1-x) * sum(k>=0, (-1)^k*x^2^(k+1)/(1+x^2^k)).

Original entry on oeis.org

0, 1, 0, 0, -1, 1, 0, 1, 0, 2, 1, 0, -1, 1, 0, 0, -1, 1, 0, -1, -2, 0, -1, 1, 0, 2, 1, 0, -1, 1, 0, 1, 0, 2, 1, 0, -1, 1, 0, 2, 1, 3, 2, 1, 0, 2, 1, 0, -1, 1, 0, -1, -2, 0, -1, 1, 0, 2, 1, 0, -1, 1, 0, 0, -1, 1, 0, -1, -2, 0, -1, 1, 0, 2, 1, 0, -1, 1, 0, -1, -2, 0, -1, -2, -3, -1
Offset: 1

Views

Author

Ralf Stephan, Jun 18 2003

Keywords

Comments

For all n, a(3*A006288(n)) = 0 as proved in Russian forum dxdy.ru - see link.

Crossrefs

Programs

  • PARI
    for(n=1, 100, l=ceil(log(n)/log(2)); t=polcoeff(1/(1-x)*sum(k=0, l, (-1)^k*(x^2^(k+1))/(1+x^2^k)) + O(x^(n+1)), n); print1(t", "))
    
  • PARI
    a(n) = sum(i=0,logint(n,2)-1, if(!bittest(n,i),(-1)^i)); \\ Kevin Ryde, May 24 2021

Formula

a(1)=0, a(2n) = -a(n)+1, a(2n+1) = -a(n).
a(n) = A030300(n) - A065359(n).
Showing 1-4 of 4 results.