A344912 Irregular triangle read by rows, Trow(n) = Seq_{k=0..n/3} Seq_{j=0..n-3*k} (n! * binomial(n - 3*k, j)) / (k!*(n - 3*k)!*3^k).
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 2, 1, 4, 6, 4, 1, 8, 8, 1, 5, 10, 10, 5, 1, 20, 40, 20, 1, 6, 15, 20, 15, 6, 1, 40, 120, 120, 40, 40, 1, 7, 21, 35, 35, 21, 7, 1, 70, 280, 420, 280, 70, 280, 280, 1, 8, 28, 56, 70, 56, 28, 8, 1, 112, 560, 1120, 1120, 560, 112, 1120, 2240, 1120
Offset: 0
Examples
Triangle begins: [0] 1; [1] 1, 1; [2] 1, 2, 1; [3] 1, 3, 3, 1, 2; [4] 1, 4, 6, 4, 1, 8, 8; [5] 1, 5, 10, 10, 5, 1, 20, 40, 20; [6] 1, 6, 15, 20, 15, 6, 1, 40, 120, 120, 40, 40; [7] 1, 7, 21, 35, 35, 21, 7, 1, 70, 280, 420, 280, 70, 280, 280. . p_{6}(x, y) = x^6 + 6*x^5*y + 15*x^4*y^2 + 20*x^3*y^3 + 15*x^2*y^4 + 6*x*y^5 + y^6 + 40*x^3 + 120*x^2*y + 120*x*y^2 + 40*y^3 + 40.
Links
- mjqxxxx, Proof of conjectured formulas for A336614, Mathematics Stack Exchange.
Crossrefs
Programs
-
Maple
B := (n, k) -> n!/(k!*(n - 3*k)!*(3^k)): C := n -> seq(binomial(n, j), j=0..n): T := (n, k) -> B(n, k)*C(n - 3*k): seq(seq(T(n, k), k = 0..n/3), n = 0..8);
-
Mathematica
gf := Exp[t^3 / 3] Exp[t (x + y)]; ser := Series[gf, {t, 0, 9}]; P[n_] := Expand[n! Coefficient[ser, t, n]]; DegLexList[p_] := MonomialList[p, {x, y}, "DegreeLexicographic"] /. x->1 /. y->1; Table[DegLexList[P[n]], {n, 0, 7}] // Flatten
Comments