cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344912 Irregular triangle read by rows, Trow(n) = Seq_{k=0..n/3} Seq_{j=0..n-3*k} (n! * binomial(n - 3*k, j)) / (k!*(n - 3*k)!*3^k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 2, 1, 4, 6, 4, 1, 8, 8, 1, 5, 10, 10, 5, 1, 20, 40, 20, 1, 6, 15, 20, 15, 6, 1, 40, 120, 120, 40, 40, 1, 7, 21, 35, 35, 21, 7, 1, 70, 280, 420, 280, 70, 280, 280, 1, 8, 28, 56, 70, 56, 28, 8, 1, 112, 560, 1120, 1120, 560, 112, 1120, 2240, 1120
Offset: 0

Views

Author

Peter Luschny, Jun 04 2021

Keywords

Comments

Consider a sequence of Pascal tetrahedrons (depending on a parameter m >= 1), where the slices of the pyramid are scaled. They are given by the e.g.f.s exp(t^m / m) * exp(t*(x + y)), which provide a sequence of bivariate polynomials in x and y, whose monomials are to be ordered in degree-lexicographic order. For m = 1 one gets A109649 (resp. A046816), for m = 2 one gets A344911 (resp. A344678), and for m = 3 the current triangle. The row sums have an unexpected interpretation in A336614 (see the link).

Examples

			Triangle begins:
[0] 1;
[1] 1, 1;
[2] 1, 2,  1;
[3] 1, 3,  3,  1,  2;
[4] 1, 4,  6,  4,  1,  8,  8;
[5] 1, 5, 10, 10,  5,  1, 20, 40,  20;
[6] 1, 6, 15, 20, 15,  6,  1, 40, 120, 120,  40,  40;
[7] 1, 7, 21, 35, 35, 21,  7,  1,  70, 280, 420, 280, 70, 280, 280.
.
p_{6}(x, y) = x^6 + 6*x^5*y + 15*x^4*y^2 + 20*x^3*y^3 + 15*x^2*y^4 + 6*x*y^5 + y^6 + 40*x^3 + 120*x^2*y + 120*x*y^2 + 40*y^3 + 40.
		

Crossrefs

m=1: A109649, (A046816) [row sums A000244], scaling A007318 [row sums A000079].
m=2: A344911, (A344678) [row sums A005425], scaling A100861 [row sums A000085].
m=3: this triangle [row sums A336614], scaling A118931 [row sums A001470].

Programs

  • Maple
    B := (n, k) -> n!/(k!*(n - 3*k)!*(3^k)): C := n -> seq(binomial(n, j), j=0..n):
    T := (n, k) -> B(n, k)*C(n - 3*k): seq(seq(T(n, k), k = 0..n/3), n = 0..8);
  • Mathematica
    gf := Exp[t^3 / 3] Exp[t (x + y)]; ser := Series[gf, {t, 0, 9}];
    P[n_] := Expand[n! Coefficient[ser, t, n]];
    DegLexList[p_] := MonomialList[p, {x, y}, "DegreeLexicographic"] /. x->1 /. y->1;
    Table[DegLexList[P[n]], {n, 0, 7}] // Flatten