A344913 Table read by rows, T(n, k) (for 0 <= k <= n) = (-2)^(n - k)*k!*Stirling2(n, k).
1, 0, 1, 0, -2, 2, 0, 4, -12, 6, 0, -8, 56, -72, 24, 0, 16, -240, 600, -480, 120, 0, -32, 992, -4320, 6240, -3600, 720, 0, 64, -4032, 28896, -67200, 67200, -30240, 5040, 0, -128, 16256, -185472, 653184, -1008000, 766080, -282240, 40320
Offset: 0
Examples
Table starts: [0] 1; [1] 0, 1; [2] 0, -2, 2; [3] 0, 4, -12, 6; [4] 0, -8, 56, -72, 24; [5] 0, 16, -240, 600, -480, 120; [6] 0, -32, 992, -4320, 6240, -3600, 720; [7] 0, 64, -4032, 28896, -67200, 67200, -30240, 5040; [8] 0, -128, 16256, -185472, 653184, -1008000, 766080, -282240, 40320.
Crossrefs
Programs
-
Maple
T := (n, k) -> (-2)^(n - k)*k!*Stirling2(n, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
-
PARI
T(n, k) = (-2)^(n - k)*k!*stirling(n, k, 2); \\ Michel Marcus, Aug 14 2021
Formula
T(n, k) = 2^(n - k)*Sum_{j=0..n} (-1)^(n - j)*binomial(k, j)*j^n.
Let row(n, x) be the n-th row polynomial, then B(n) = row(n-1, 1)*n / (4^n - 2^n) is the n-th Bernoulli number (with B(1) = 1/2) for n >= 1.