A344914 T(n, k) = 2^(3*k)*(n - 3*k)!, for n >= 0 and 0 <= k <= floor(n/3). Triangle read by rows.
1, 1, 2, 6, 8, 24, 8, 120, 16, 720, 48, 64, 5040, 192, 64, 40320, 960, 128, 362880, 5760, 384, 512, 3628800, 40320, 1536, 512, 39916800, 322560, 7680, 1024, 479001600, 2903040, 46080, 3072, 4096, 6227020800, 29030400, 322560, 12288, 4096
Offset: 0
Examples
[ 0] 1; [ 1] 1; [ 2] 2; [ 3] 6, 8; [ 4] 24, 8; [ 5] 120, 16; [ 6] 720, 48, 64; [ 7] 5040, 192, 64; [ 8] 40320, 960, 128; [ 9] 362880, 5760, 384, 512; [10] 3628800, 40320, 1536, 512; [11] 39916800, 322560, 7680, 1024; [12] 479001600, 2903040, 46080, 3072, 4096;
Programs
-
Maple
T := (n, k) -> 2^(3*k)*(n-3*k)!: seq(seq(T(n,k), k = 0..n/3), n = 0..13);
-
Mathematica
Table[2^(3k) (n-3k)!,{n,0,20},{k,0,Floor[n/3]}]//Flatten (* Harvey P. Dale, Feb 13 2022 *)