cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344921 Numbers that are the sum of four fourth powers in exactly six ways.

Original entry on oeis.org

3847554, 5624739, 6044418, 6593538, 6899603, 9851058, 10456338, 11645394, 12378018, 13638738, 16990803, 19081089, 20622338, 20649603, 20755218, 20795763, 24174003, 24368769, 25265553, 25850178, 25899058, 28470339, 29195154, 30295539, 30534018, 30623394
Offset: 1

Views

Author

David Consiglio, Jr., Jun 02 2021

Keywords

Comments

Differs from A344904 at term 4 because 6576339 = 1^4 + 24^4 + 41^4 + 43^4 = 3^4 + 7^4 + 41^4 + 44^4 = 4^4 + 23^4 + 27^4 + 49^4 = 6^4 + 31^4 + 41^4 + 41^4 = 7^4 + 11^4 + 36^4 + 47^4 = 7^4 + 21^4 + 28^4 + 49^4 = 12^4 + 17^4 + 29^4 + 49^4.

Examples

			3847554 is a term because 3847554 = 2^4 + 13^4 + 29^4 + 42^4  = 2^4 + 21^4 + 22^4 + 43^4  = 6^4 + 11^4 + 17^4 + 44^4  = 6^4 + 31^4 + 32^4 + 37^4  = 9^4 + 29^4 + 32^4 + 38^4  = 13^4 + 26^4 + 32^4 + 39^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 6])
    for x in range(len(rets)):
        print(rets[x])