cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344934 Number of rooted binary phylogenetic trees with n leaves and minimal Sackin tree balance index.

Original entry on oeis.org

1, 1, 3, 3, 30, 135, 315, 315, 11340, 198450, 2182950, 16372125, 85135050, 297972675, 638512875, 638512875, 86837751000, 5861548192500, 259861969867500, 8445514020693750, 212826953321482500, 4292010225316563750, 70511596558772118750, 951906553543423603125, 10576739483815817812500, 96248329302723942093750
Offset: 1

Views

Author

Mareike Fischer, Jun 09 2021

Keywords

Comments

Rooted binary phylogenetic trees with n leaves are rooted trees for which each internal node has precisely two children and whose leaves are bijectively labeled by the set {1,...,n}.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = Ceiling[Log2[n]], int, na, nb, sum, i},
      If[n == 1, Return[1],
       int = IntegerPartitions[n, {2}];
       If[OddQ[n], sum = 0, sum = 1/2*Binomial[n, n/2]*((a[n/2])^2)];
       For[i = 1, i <= Length[int], i++,
        na = int[[i]][[1]]; nb = int[[i]][[2]];
        If[na > n/2 && na <= 2^(k - 1) && nb >= 2^(k - 2),
         sum = sum + Binomial[n, na]*a[na]*a[nb];
         ];
        ];
       Return[sum];
       ]]
  • PARI
    seq(n)={my(a=vector(n)); a[1]=1; for(n=2, #a, my(k=1+logint(n-1,2)); a[n]=if(n%2==0, a[n/2]*binomial(n,n/2)/2) + sum(i=n\2+1, min(2^(k-1), n-2^(k-2)), binomial(n,i)*a[i]*a[n-i])); a} \\ Andrew Howroyd, Jun 09 2021

Formula

With k:=log_2(n) and g(n):=0 if n is odd and g(n) := (1/2)*binomial(n,n/2)*a(n/2) if n is even and pairs := set of all pairs (na,nb) such that na+nb=n and na >= nb and na > n/2 and na <= 2^(k-1) and nb >= 2^(k-2), we get:
a(n) = g(n) + sum over all described pairs (na,nb): binomial(n,na)*a(na)*a(nb).
a(n) = g(n) + Sum_{i=floor(n/2)+1..2^(k-1), i <= 2^(k-2)} binomial(n,i)*a(i)*a(n-i), where k = ceiling(log_2(n)) and g(n)=0 for odd n, g(n) = binomial(n,n/2)*a(n/2)/2 for even n.