A344934 Number of rooted binary phylogenetic trees with n leaves and minimal Sackin tree balance index.
1, 1, 3, 3, 30, 135, 315, 315, 11340, 198450, 2182950, 16372125, 85135050, 297972675, 638512875, 638512875, 86837751000, 5861548192500, 259861969867500, 8445514020693750, 212826953321482500, 4292010225316563750, 70511596558772118750, 951906553543423603125, 10576739483815817812500, 96248329302723942093750
Offset: 1
Keywords
Links
- Mareike Fischer, Extremal Values of the Sackin Tree Balance Index, Ann. Comb. 25, 515-541 (2021).
Programs
-
Mathematica
a[n_] := Module[{k = Ceiling[Log2[n]], int, na, nb, sum, i}, If[n == 1, Return[1], int = IntegerPartitions[n, {2}]; If[OddQ[n], sum = 0, sum = 1/2*Binomial[n, n/2]*((a[n/2])^2)]; For[i = 1, i <= Length[int], i++, na = int[[i]][[1]]; nb = int[[i]][[2]]; If[na > n/2 && na <= 2^(k - 1) && nb >= 2^(k - 2), sum = sum + Binomial[n, na]*a[na]*a[nb]; ]; ]; Return[sum]; ]]
-
PARI
seq(n)={my(a=vector(n)); a[1]=1; for(n=2, #a, my(k=1+logint(n-1,2)); a[n]=if(n%2==0, a[n/2]*binomial(n,n/2)/2) + sum(i=n\2+1, min(2^(k-1), n-2^(k-2)), binomial(n,i)*a[i]*a[n-i])); a} \\ Andrew Howroyd, Jun 09 2021
Formula
With k:=log_2(n) and g(n):=0 if n is odd and g(n) := (1/2)*binomial(n,n/2)*a(n/2) if n is even and pairs := set of all pairs (na,nb) such that na+nb=n and na >= nb and na > n/2 and na <= 2^(k-1) and nb >= 2^(k-2), we get:
a(n) = g(n) + sum over all described pairs (na,nb): binomial(n,na)*a(na)*a(nb).
a(n) = g(n) + Sum_{i=floor(n/2)+1..2^(k-1), i <= 2^(k-2)} binomial(n,i)*a(i)*a(n-i), where k = ceiling(log_2(n)) and g(n)=0 for odd n, g(n) = binomial(n,n/2)*a(n/2)/2 for even n.
Comments