cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344937 a(n) is the largest k such that when strings of zeros of lengths t = 1..k are inserted between every pair of adjacent digits of prime(n), the resulting numbers are all primes.

Original entry on oeis.org

1, 1, 1, 3, 0, 0, 0, 1, 2, 0, 0, 2, 2, 1, 2, 4, 0, 1, 0, 2, 4, 0, 0, 1, 1, 2, 0, 3, 0, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 5

Views

Author

Felix Fröhlich, Jun 03 2021

Keywords

Comments

Initially, except for n = 1..4, similar to A290174, but the two sequences differ from n = 28 onwards.

Examples

			For n = 8: prime(8) = 19 and the numbers 109, 1009 and 10009 are all prime, while 100009 is not. Thus it is possible to insert strings of zeros of lengths 1, 2 and 3 between all adjacent digits of 19 such that the resulting number is prime. Since 3 is the largest length of such a string in case of 19, a(8) = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[k=0;While[PrimeQ@FromDigits@Flatten@Riffle[IntegerDigits@Prime@n,{Table[0,k]}],k++];k-1,{n,5,100}] (* Giorgos Kalogeropoulos, Jun 03 2021 *)
  • PARI
    eva(n) = subst(Pol(n), x, 10)
    insert_zeros(num, len) = my(d=digits(num), v=[]); for(k=1, #d-1, v=concat(v, concat([d[k]], vector(len)))); v=concat(v, d[#d]); eva(v)
    a(n) = my(p=prime(n), ip=p); for(k=1, oo, ip=insert_zeros(p, k); if(!ispseudoprime(ip), return(k-1)))
    
  • Python
    from sympy import isprime, prime
    def insert_zeros(n, k): return int(("0"*k).join(list(str(n))))
    def a(n):
      pn, k = prime(n), 1
      while isprime(insert_zeros(pn, k)): k += 1
      return k - 1
    print([a(n) for n in range(5, 92)]) # Michael S. Branicky, Jun 03 2021