A344948 Primes whose position among the powers of primes (A000961) is also prime.
2, 3, 5, 19, 29, 47, 67, 73, 101, 113, 137, 167, 193, 199, 239, 263, 313, 349, 389, 419, 431, 449, 461, 487, 571, 599, 641, 701, 719, 751, 797, 823, 857, 887, 911, 977, 991, 1019, 1097, 1193, 1223, 1231, 1277, 1301, 1307, 1399, 1439, 1481, 1511, 1531, 1571, 1601
Offset: 1
Keywords
Examples
The position of 2 in A000961 is 2; so 2 is a term. The position of 19 in A000961 is 13; so 19 is a term.
Links
- Michel Marcus, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
pow = Select[Range[1600], # == 1 || PrimePowerQ[#] &]; Select[pow[[Select[Range @ Length[pow], PrimeQ]]], PrimeQ] (* Amiram Eldar, Jun 03 2021 *)
-
PARI
allmps(nn) = {my(map = Map()); mapput(map, 1, 1); my(nb=1); for (n=2, nn, if (isprimepower(n), nb++; mapput(map, n, nb));); map;} lista(nn) = {my(nb = prime(nn), map = allmps(nb)); forprime (p=1, nn, if( isprime(mapget(map, p)), print1(p, ", ")););}