cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A344970 a(n) = A011772(n) / gcd(A011772(n), A344875(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 7, 5, 1, 1, 1, 1, 15, 1, 11, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 11, 1, 7, 1, 1, 19, 1, 1, 1, 5, 1, 16, 9, 23, 1, 16, 1, 1, 17, 13, 1, 9, 1, 8, 1, 1, 1, 15, 1, 31, 9, 1, 25, 11, 1, 1, 23, 5, 1, 21, 1, 1, 1, 4, 7, 1, 1, 16, 1, 1, 1, 4, 17, 43, 29, 16, 1, 35, 13, 23, 1, 47, 19, 1, 1, 1, 11
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2021

Keywords

Comments

Denominator of the ratio A344875(n)/A011772(n): 1/1, 3/3, 2/2, 7/7, 4/4, 6/3, 6/6, 15/15, 8/8, 12/4, 10/10, 14/8, 12/12, 18/7, 8/5, 31/31, 16/16, 24/8, 18/18, 28/15, 12/6, 30/11, ..., = 1/1, 1/1, 1/1, 1/1, 1/1, 2/1, 1/1, 1/1, 1/1, 3/1, 1/1, 7/4, 1/1, 18/7, 8/5, 1/1, 1/1, 3/1, 1/1, 28/15, 2/1, 30/11, etc.

Crossrefs

Cf. A011772, A344875, A344969, A344971 (numerators), A344972 (ratio floored down), A344974 (positions of ones), A344980 (of terms > 1).

Programs

  • Mathematica
    A011772[n_] := Module[{m = 1}, While[Not[IntegerQ[m(m+1)/(2n)]], m++]; m];
    A344875[n_] := Product[{p, e} = pe; If[p == 2, 2^(1+e)-1, p^e-1], {pe, FactorInteger[n]}];
    a[n_] := A011772[n]/GCD[A011772[n], A344875[n]];
    Array[a, 100] (* Jean-François Alcover, Jun 12 2021 *)
  • PARI
    A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772
    A344875(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^(f[2, i]+(2==f[1, i]))-1)); };
    A344970(n) = { my(u=A011772(n)); (u/gcd(u, A344875(n))); };

Formula

a(n) = A011772(n) / A344969(n) = A011772(n) / gcd(A011772(n), A344875(n)).

A344974 Numbers k such that A011772(k) divides A344875(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 39, 40, 41, 43, 47, 49, 50, 53, 55, 57, 58, 59, 61, 64, 67, 68, 71, 73, 74, 75, 78, 79, 81, 82, 83, 89, 93, 96, 97, 98, 100, 101, 103, 106, 107, 109, 111, 113, 120, 121, 122, 125, 127, 128, 129, 131, 136, 137
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2021

Keywords

Crossrefs

Cf. A011772, A344875, A344884 (characteristic function).
Positions of ones in A344970, of zeros in A344973.
Union of A000961 and A344975. Complement of A344980.
Cf. also A344595 (subsequence).

Programs

A344694 Numbers k, not powers of primes, for which A011772(k) divides A344875(k), and for all proper divisors d of k, A011772(d) < A011772(k).

Original entry on oeis.org

900, 1260, 1560, 3740, 6552, 6669, 9680, 18981, 19880, 35784, 36080, 59040, 62238, 62244, 81872, 103730, 108500, 118910, 134420, 160160, 171740, 185724, 211072, 217833, 222224, 225929, 227528, 259325, 351072, 384944, 404294, 414778, 422604, 425178, 446600, 456228, 463008, 488205, 490105, 527100, 574308, 581184, 598400
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Comments

Has many terms common with A344595.

Crossrefs

Intersection of A024619, A344881 and A344974. Intersection of A344881 and A344975.
Cf. also A344595, A344980.

Programs

  • PARI
    A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772
    A344875(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^(f[2, i]+(2==f[1, i]))-1)); };
    A344880(n) = { my(x=A011772(n)); fordiv(n, d, if(A011772(d)==x, return(d==n))); };
    A344973(n) = (A344875(n)%A011772(n));
    isA344694(n) = ((n>1)&&!isprimepower(n)&&(0==A344973(n))&&A344880(n));
Showing 1-3 of 3 results.