A344970 a(n) = A011772(n) / gcd(A011772(n), A344875(n)).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 7, 5, 1, 1, 1, 1, 15, 1, 11, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 11, 1, 7, 1, 1, 19, 1, 1, 1, 5, 1, 16, 9, 23, 1, 16, 1, 1, 17, 13, 1, 9, 1, 8, 1, 1, 1, 15, 1, 31, 9, 1, 25, 11, 1, 1, 23, 5, 1, 21, 1, 1, 1, 4, 7, 1, 1, 16, 1, 1, 1, 4, 17, 43, 29, 16, 1, 35, 13, 23, 1, 47, 19, 1, 1, 1, 11
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Crossrefs
Programs
-
Mathematica
A011772[n_] := Module[{m = 1}, While[Not[IntegerQ[m(m+1)/(2n)]], m++]; m]; A344875[n_] := Product[{p, e} = pe; If[p == 2, 2^(1+e)-1, p^e-1], {pe, FactorInteger[n]}]; a[n_] := A011772[n]/GCD[A011772[n], A344875[n]]; Array[a, 100] (* Jean-François Alcover, Jun 12 2021 *)
-
PARI
A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772 A344875(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^(f[2, i]+(2==f[1, i]))-1)); }; A344970(n) = { my(u=A011772(n)); (u/gcd(u, A344875(n))); };
Comments