cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344997 a(n) = A173557(n) * A344753(n).

Original entry on oeis.org

0, 2, 4, 5, 8, 24, 12, 11, 14, 64, 20, 56, 24, 120, 144, 23, 32, 78, 36, 152, 264, 280, 44, 120, 44, 384, 44, 288, 56, 672, 60, 47, 600, 640, 624, 182, 72, 792, 816, 328, 80, 1296, 84, 680, 480, 1144, 92, 248, 90, 332, 1344, 936, 104, 240, 1360, 624, 1656, 1792, 116, 1536, 120, 2040, 888, 95, 1824, 3120, 132, 1568, 2376
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); a[1] = 0; a[n_] := Module[{fct = FactorInteger[n], p}, p = fct[[;; , 1]]; Times @@ (p - 1)*(Times @@ f @@@ fct + n*Times @@ (1 + 1/p) - 2*n)]; Array[a, 100] (* Amiram Eldar, Dec 08 2023 *)
  • PARI
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    A344753(n) = sumdiv(n,d,(dA344997(n) = (A173557(n)*A344753(n));

Formula

a(n) = A173557(n) * A344753(n).
a(n) = Product(p_i - 1) * [Sum_{d|n, dA008966(n/d) * d)], where p_i are distinct primes dividing n.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 1/zeta(2) - 2 * A307868 + zeta(2)*zeta(3) * Product_{p prime} (1 - 2/p^2 - 1/p^3 + 1/p^4 + 3/p^5 - 2/p^6) = 0.283799589272... . - Amiram Eldar, Dec 08 2023