cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A345032 Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} k^(floor(n/j) - 1).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 3, 2, 1, 4, 6, 4, 3, 1, 5, 11, 12, 5, 3, 1, 6, 18, 32, 21, 6, 4, 1, 7, 27, 70, 87, 41, 7, 4, 1, 8, 38, 132, 263, 258, 74, 8, 5, 1, 9, 51, 224, 633, 1047, 745, 144, 9, 5, 1, 10, 66, 352, 1305, 3158, 4120, 2224, 275, 10, 6, 1, 11, 83, 522, 2411, 7821, 15659, 16460, 6605, 541, 11, 6
Offset: 1

Views

Author

Seiichi Manyama, Jun 06 2021

Keywords

Examples

			Square array begins:
  1, 1,  1,   1,    1,    1,    1, ...
  1, 2,  3,   4,    5,    6,    7, ...
  2, 3,  6,  11,   18,   27,   38, ...
  2, 4, 12,  32,   70,  132,  224, ...
  3, 5, 21,  87,  263,  633, 1305, ...
  3, 6, 41, 258, 1047, 3158, 7821, ...
		

Crossrefs

Columns k=0..3 give A110654, A000027, A345028, A345029.
T(n,n) gives A345030.

Programs

  • Mathematica
    T[n_, 0] := Floor[(n + 1)/2]; T[n_, k_] := Sum[k^(Floor[n/j] - 1), {j, 1, n}]; Table[T[k, n - k], {n, 1, 12}, {k, 1, n}] // Flatten (* Amiram Eldar, Jun 06 2021 *)
  • PARI
    T(n, k) = sum(j=1, n, k^(n\j-1));

Formula

G.f. of column k: (1/(1 - x)) * Sum_{j>=1} x^j * (1 - x^j)/(1 - k*x^j).

A345035 a(n) = Sum_{k=1..n} (-3)^(floor(n/k) - 1).

Original entry on oeis.org

1, -2, 11, -28, 81, -234, 739, -2216, 6545, -19594, 59139, -177408, 531181, -1593614, 4783799, -14351032, 43044597, -129133854, 387426799, -1162281332, 3486765521, -10460293354, 31381119459, -94143358440, 282429356977, -847288080362, 2541866366171
Offset: 1

Views

Author

Seiichi Manyama, Jun 06 2021

Keywords

Crossrefs

Column k=3 of A345033.

Programs

  • Mathematica
    a[n_] := Sum[(-3)^(Floor[n/k] - 1), {k, 1, n}]; Array[a, 30] (* Amiram Eldar, Jun 06 2021 *)
  • PARI
    a(n) = sum(k=1, n, (-3)^(n\k-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k*(1-x^k)/(1+3*x^k))/(1-x))

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} x^k * (1 - x^k)/(1 + 3*x^k).
Showing 1-2 of 2 results.