cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345052 a(n) = A003557(n) * A048250(n) * A173557(n).

Original entry on oeis.org

1, 3, 8, 6, 24, 24, 48, 12, 24, 72, 120, 48, 168, 144, 192, 24, 288, 72, 360, 144, 384, 360, 528, 96, 120, 504, 72, 288, 840, 576, 960, 48, 960, 864, 1152, 144, 1368, 1080, 1344, 288, 1680, 1152, 1848, 720, 576, 1584, 2208, 192, 336, 360, 2304, 1008, 2808, 216, 2880, 576, 2880, 2520, 3480, 1152, 3720, 2880, 1152, 96
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^2 - 1)*p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 16 2022 *)
  • PARI
    A345052(n) = { my(f=factor(n)); prod(i=1, #f~, ((f[i,1]^2)-1)*(f[i,1]^(f[i, 2]-1))); };

Formula

Multiplicative with a(p^e) = (p^2 - 1) * p^(e-1).
a(n) = A007434(n) / A003557(n) = A003557(n) * A048250(n) * A173557(n).
From Amiram Eldar, Oct 16 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^3, where c = 2/Pi^2 = 0.202642... (A185197).
Sum_{n>=1} 1/a(n) = A065484.
a(n) = A000010(n) * A048250(n). (End)