cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A345057 Distance to the next larger number k > n for which A011772(k) = A011772(n), or 0 if no such number exists.

Original entry on oeis.org

0, 4, 0, 10, 5, 0, 14, 12, 3, 0, 44, 6, 13, 14, 0, 46, 17, 18, 38, 4, 0, 11, 230, 6, 25, 13, 90, 0, 29, 10, 62, 40, 33, 34, 70, 0, 37, 57, 39, 20, 41, 28, 86, 4, 0, 23, 1034, 40, 7, 25, 102, 78, 53, 9, 0, 28, 114, 145, 1652, 60, 61, 62, 63, 190, 260, 0, 134, 68, 23, 140, 284, 24, 73, 37, 25, 38, 154, 0
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2021

Keywords

Crossrefs

Cf. A000217 (positions of zeros), A002024, A011772, A066561, A345056, A345058.

Programs

  • PARI
    A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772
    A345057(n) = { my(x=A011772(n), y=binomial(x+1,2)); for(i=1+n,y,if(A011772(i)==x,return(i-n))); (0); };

Formula

a(n) = A345056(n) - n.

A345058 Number of distinct k > 0 for which A011772(k) = n.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 2, 7, 4, 2, 2, 4, 4, 3, 1, 5, 4, 4, 3, 7, 2, 3, 2, 7, 6, 4, 3, 3, 4, 7, 4, 13, 3, 4, 2, 4, 6, 3, 4, 7, 6, 3, 4, 7, 1, 5, 2, 7, 11, 6, 2, 7, 4, 5, 2, 11, 3, 4, 2, 7, 8, 5, 5, 7, 2, 3, 4, 4, 5, 3, 4, 13, 9, 6, 6, 9, 2, 4, 4, 8, 15, 6, 2, 11, 3, 3, 3, 7, 6, 3, 1, 5, 4, 7, 3, 13, 10, 11, 7, 6, 6, 5, 4, 8, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2021

Keywords

Comments

Question: Are there any numbers n other than 1, 3, 15, 45, 91 for which a(n) = 1?

Examples

			A011772 obtains the value 6 only as A011772(7)=6 and A011772(36)=6, therefore a(6) = 2.
		

Crossrefs

Programs

  • PARI
    A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772
    A345058(n) = { my(x=A011772(n), y=binomial(x+1,2)); sum(i=1,y,(A011772(i)==x)); };

Formula

a(n) = Sum_{i=1..A000217(n)} [A011772(i) = A011772(n)], where [ ] is the Iverson bracket.
Showing 1-2 of 2 results.