A343523
a(0) = 1; a(n) = 2 * Sum_{k=1..n} binomial(n,k) * a(k-1).
Original entry on oeis.org
1, 2, 8, 34, 164, 878, 5136, 32490, 220476, 1594470, 12223016, 98876322, 840804820, 7491247006, 69730182720, 676390547034, 6821988655468, 71398971351510, 774032400213336, 8677733804696594, 100459693769214980, 1199306075189097230, 14746332963835756400, 186534818943430728906
Offset: 0
-
a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[n, k] a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 23}]
nmax = 23; A[] = 0; Do[A[x] = 1 + 2 x A[x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
A343975
a(0) = 1; a(n) = 3 * Sum_{k=1..n} binomial(n,k) * a(k-1).
Original entry on oeis.org
1, 3, 15, 81, 489, 3237, 23211, 178707, 1467051, 12768345, 117263829, 1131901521, 11444383251, 120847326879, 1329303053391, 15197269729689, 180211641841353, 2212525627591533, 28078380387448515, 367782119667874083, 4965441830591976339, 69014083524412401873, 986364827548578356421
Offset: 0
-
a[0] = 1; a[n_] := a[n] = 3 Sum[Binomial[n, k] a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 22}]
nmax = 22; A[] = 0; Do[A[x] = 1 + 3 x A[x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
A344735
a(0) = 1; a(n) = 4 * Sum_{k=1..n} binomial(n,k) * a(k-1).
Original entry on oeis.org
1, 4, 24, 156, 1120, 8740, 73384, 657900, 6259184, 62876852, 664134968, 7349666684, 84956020864, 1023006054980, 12802727760840, 166174971580684, 2232866214809360, 31007771007956948, 444360490882720344, 6562410784684023452, 99749853821538893216, 1558780425524233360740
Offset: 0
-
a[0] = 1; a[n_] := a[n] = 4 Sum[Binomial[n, k] a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 21}]
nmax = 21; A[] = 0; Do[A[x] = 1 + 4 x A[x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
A344840
a(0) = 1; a(n) = 5 * Sum_{k=1..n} binomial(n,k) * a(k-1).
Original entry on oeis.org
1, 5, 35, 265, 2195, 19625, 187755, 1909185, 20521515, 232124745, 2752591475, 34108980105, 440444019835, 5912197332865, 82320781521195, 1186703083508025, 17680850448587155, 271845880552898985, 4307188044378111915, 70236616096770062945, 1177406236243423738475
Offset: 0
-
a[0] = 1; a[n_] := a[n] = 5 Sum[Binomial[n, k] a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 20}]
nmax = 20; A[] = 0; Do[A[x] = 1 + 5 x A[x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
A345078
a(0) = 1; a(n) = 7 * Sum_{k=1..n} binomial(n,k) * a(k-1).
Original entry on oeis.org
1, 7, 63, 609, 6349, 70693, 835051, 10408335, 136290371, 1867933865, 26712000161, 397487932457, 6140285212915, 98264596199651, 1626101133819855, 27779382241071769, 489188555650420493, 8867962363328434205, 165284825277198034611, 3163858565498874214559, 62133992974174011252635
Offset: 0
-
a[0] = 1; a[n_] := a[n] = 7 Sum[Binomial[n, k] a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 20}]
nmax = 20; A[] = 0; Do[A[x] = 1 + 7 x A[x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
A345081
a(0) = 1; a(n) = 8 * Sum_{k=1..n} binomial(n,k) * a(k-1).
Original entry on oeis.org
1, 8, 80, 856, 9824, 119912, 1547376, 21007992, 298874496, 4440618120, 68706037904, 1104224971416, 18394192882336, 316974497161384, 5640790811468976, 103503851543959224, 1955546066369814208, 37994858794236710088, 758272809049577019600, 15527828509092566876888
Offset: 0
-
a[0] = 1; a[n_] := a[n] = 8 Sum[Binomial[n, k] a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 19}]
nmax = 19; A[] = 0; Do[A[x] = 1 + 8 x A[x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Showing 1-6 of 6 results.