cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345114 Numbers whose trajectories under the map x -> A345111(x) do not reach a palindrome (conjectured).

Original entry on oeis.org

49, 58, 59, 67, 68, 69, 76, 77, 78, 79, 85, 86, 87, 88, 94, 95, 96, 97, 103, 114, 115, 116, 117, 119, 121, 124, 125, 126, 128, 129, 131, 134, 135, 137, 138, 139, 141, 142, 143, 146, 148, 149, 151, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 168
Offset: 1

Views

Author

Felix Fröhlich, Jun 09 2021

Keywords

Comments

The trajectories of the given terms do not reach a palindrome in 10000 (10^4) or fewer steps. The trajectory of 49 does not reach a palindrome in 100000 (10^5) or fewer steps.

Crossrefs

Cf. A023108 (analog for the map x -> A056964(x)), A345110, A345111, A345112, A345113, A345115.

Programs

  • PARI
    eva(n) = subst(Pol(n), x, 10)
    rot(vec) = if(#vec < 2, return(vec)); my(s=concat(Str(2), ".."), v=[]); s=concat(s, Str(#vec)); v=vecextract(vec, s); v=concat(v, vec[1]); v
    a345112(n, bound) = my(x=n, i=0); while(1, x=x+eva(rot(digits(x))); i++; if(digits(x)==Vecrev(digits(x)), break); if(i > bound, return(-1))); i
    is(n) = a345112(n, 10000)==-1
    
  • Python
    def pal(s): return s == s[::-1]
    def rotl(s): return s[1:] + s[0]
    def A345111(n): return n + int(rotl(str(n)))
    def A345112_bd(n, bd=10000):
        i, iter, seen = 0, n, set()
        while not (iter > n and pal(str(iter))) and iter not in seen and i < bd:
            seen.add(iter)
            i, iter = i+1, A345111(iter)
        return i if iter > n and pal(str(iter)) else 0
    def aupto(lim, bd=10000):
        return [n for n in range(1, lim+1) if A345112_bd(n, bd=bd) == 0]
    print(aupto(168, bd=100)) # Michael S. Branicky, Jun 09 2021