A345124 a(n) is the smallest k such that f(k) is composite for all m-fold compositions f of the functions 6*x +- 1, 1 <= m <= n.
20, 50, 284, 1868, 47951, 6245927, 15932178151
Offset: 1
Examples
Formula for the twin composites by iteration n: n=1: 6*k+-1. n=2: 6*(6*k+-1)+-1. n=3: 6*(6*(6*k+-1)+-1)+-1. Term a(n) example for smallest number k for iteration n: a(1)=20, 6*20-1=119, 6*20+1=121, all {119,121} are composite numbers. a(2)=50, 6*50-1=299, 6*50+1=301, 6*(6*50-1)-1=1793, 6*(6*50-1)+1=1795, 6*(6*50+1)-1=1805, 6*(6*50+1)+1=1807, all {299,301,1793,1795,1805,1807} are composite numbers.
Programs
-
Mathematica
a[n_] := Module[{k = 1}, While[!AllTrue[Flatten@ Rest@ NestList[Flatten@ Join[{6*# - 1, 6*# + 1}] &, k, n], CompositeQ], k++]; k]; Array[a, 5] (* Amiram Eldar, Oct 25 2021 *)
-
Python
from sympy import isprime def A345124(n): C = [[1]] for i in range(n-1): C.append(sum(([6*c-1,6*c+1] for c in C[-1]),[])) k = 1 while 1: k6 = 6*k for i in range(n): if any(isprime(k6-c) or isprime(k6+c) for c in C[i]): break k6 *= 6 else: return k k += 1 # Pontus von Brömssen, Nov 01 2021
Extensions
More terms from Pontus von Brömssen, Oct 06 2021
Name edited by Pontus von Brömssen, Nov 01 2021
a(7) from Martin Ehrenstein, Nov 13 2021
Comments