A345162 Number of integer partitions of n with no alternating permutation covering an initial interval of positive integers.
0, 0, 1, 1, 1, 2, 2, 3, 3, 5, 6, 6, 8, 10, 11, 15, 16, 18, 23, 27, 30, 35, 41, 47, 54, 62, 71, 82, 92, 103, 121, 137, 151, 173, 195, 220, 248, 277, 311, 350, 393, 435, 488, 546, 605, 678, 754, 835, 928, 1029, 1141, 1267, 1400, 1544, 1712, 1891, 2081, 2298, 2533, 2785, 3068
Offset: 0
Keywords
Examples
The a(2) = 1 through a(10) = 6 partitions: 11 111 1111 2111 21111 2221 221111 22221 32221 11111 111111 211111 2111111 321111 222211 1111111 11111111 2211111 3211111 21111111 22111111 111111111 211111111 1111111111
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
Crossrefs
The complement in covering partitions is counted by A345163.
The separable case is A345166.
A000041 counts integer partitions.
A001250 counts alternating permutations.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A344604 counts alternating compositions with twins.
A344605 counts alternating patterns with twins.
A345164 counts alternating permutations of prime indices.
Programs
-
Mathematica
normQ[m_]:=m=={}||Union[m]==Range[Max[m]]; wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1]; Table[Length[Select[IntegerPartitions[n],normQ[#]&&Select[Permutations[#],wigQ[#]&]=={}&]],{n,0,15}]
-
PARI
P(n,m)={Vec(1/prod(k=1, m, 1-y*x^k, 1+O(x*x^n)))} a(n) = {(n >= 2) + sum(k=2, (sqrtint(8*n+1)-1)\2, my(r=n-binomial(k+1,2), v=P(r, k)); sum(i=1, min(k,2*r\k), sum(j=k-1, (2*r-(k-1)*(i-1))\(i+1), my(p=(j+k+(i==1||i==k))\2); if(p*i<=r, polcoef(v[r-p*i+1],j-p)) )))} \\ Andrew Howroyd, Jan 31 2024
Formula
Extensions
a(26) onwards from Andrew Howroyd, Jan 31 2024
Comments