A345171 Numbers whose multiset of prime factors has no alternating permutation.
4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 80, 81, 88, 96, 104, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 208, 224, 232, 240, 243, 248, 250, 256, 270, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336, 343, 344, 351
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 4: {1,1} 8: {1,1,1} 9: {2,2} 16: {1,1,1,1} 24: {1,1,1,2} 25: {3,3} 27: {2,2,2} 32: {1,1,1,1,1} 40: {1,1,1,3} 48: {1,1,1,1,2} 49: {4,4} 54: {1,2,2,2} 56: {1,1,1,4} 64: {1,1,1,1,1,1} 80: {1,1,1,1,3} 81: {2,2,2,2} 88: {1,1,1,5} 96: {1,1,1,1,1,2}
Crossrefs
Programs
-
Mathematica
wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1]; Select[Range[100],Select[Permutations[Flatten[ ConstantArray@@@FactorInteger[#]]],wigQ]=={}&]
Comments