A345173 Numbers whose multiset of prime factors is separable but has no alternating permutation.
270, 378, 594, 702, 918, 1026, 1242, 1566, 1620, 1674, 1750, 1998, 2214, 2268, 2322, 2538, 2625, 2750, 2862, 3186, 3250, 3294, 3564, 3618, 3834, 3942, 4050, 4125, 4212, 4250, 4266, 4482, 4750, 4806, 4875, 5238, 5454, 5508, 5562, 5670, 5750, 5778, 5886, 6102
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 270: {1,2,2,2,3} 378: {1,2,2,2,4} 594: {1,2,2,2,5} 702: {1,2,2,2,6} 918: {1,2,2,2,7} 1026: {1,2,2,2,8} 1242: {1,2,2,2,9} 1566: {1,2,2,2,10} 1620: {1,1,2,2,2,2,3} 1674: {1,2,2,2,11} 1750: {1,3,3,3,4} 1998: {1,2,2,2,12} 2214: {1,2,2,2,13} 2268: {1,1,2,2,2,2,4} 2322: {1,2,2,2,14}
Crossrefs
The partitions with these Heinz numbers are counted by A345166.
Permutations of this type are ranked by A345169.
Numbers with a factorization of this type are counted by A348609.
A000041 counts integer partitions.
A003242 counts anti-run compositions.
A344606 counts alternating permutations of prime indices with twins.
A344740 counts twins and partitions with an alternating permutation.
A345164 counts alternating permutations of prime factors.
A345165 counts partitions without an alternating permutation.
A345170 counts partitions with an alternating permutation.
A348379 counts factorizations with an alternating permutation.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1]; sepQ[y_]:=!MatchQ[y,{_,x_,x_,_}]; Select[Range[1000],Select[Permutations[primeMS[#]],wigQ]=={}&&!Select[Permutations[primeMS[#]],sepQ]=={}&]
Comments