A345186 Numbers that are the sum of five third powers in exactly nine ways.
6112, 6138, 6462, 6497, 7001, 7038, 7057, 7064, 7099, 7190, 7316, 7328, 7372, 7433, 7561, 7587, 7703, 7759, 7841, 7902, 8163, 8352, 8443, 8560, 8630, 8632, 8928, 8991, 9017, 9136, 9143, 9171, 9288, 9316, 9379, 9505, 9566, 9647, 9658, 9675, 9684, 9745, 9773
Offset: 1
Keywords
Examples
6112 is a term because 6112 = 1^3 + 2^3 + 9^3 + 11^3 + 14^3 = 1^3 + 3^3 + 7^3 + 12^3 + 14^3 = 1^3 + 6^3 + 6^3 + 7^3 + 16^3 = 2^3 + 2^3 + 9^3 + 9^3 + 15^3 = 2^3 + 3^3 + 5^3 + 11^3 + 15^3 = 2^3 + 8^3 + 9^3 + 9^3 + 14^3 = 3^3 + 3^3 + 3^3 + 4^3 + 17^3 = 3^3 + 5^3 + 8^3 + 11^3 + 14^3 = 8^3 + 8^3 + 8^3 + 11^3 + 12^3.
Links
- David Consiglio, Jr., Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 5): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 9]) for x in range(len(rets)): print(rets[x])
Comments