cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345207 Number of (unlabeled) 7-paths with n vertices.

Original entry on oeis.org

1, 1, 2, 4, 11, 32, 117, 468, 2151, 10722, 58071, 333774, 2018321, 12678506, 82035085, 542520052, 3646124339, 24791545874, 169986552195, 1172526610674, 8122332718341, 56435590886610, 392969320828713, 2740480494041976, 19132214719583207, 133671249471111626
Offset: 9

Views

Author

Allan Bickle, Jun 10 2021

Keywords

Comments

A k-path with order n at least k+2 is a k-tree with exactly two k-leaves (vertices of degree k). It can be constructed from a clique with k+1 vertices by iteratively adding a new degree k vertex adjacent to an existing clique containing an existing k-leaf.
Also, the number of equivalence classes of strings of length n-9 using a maximum of seven different numbers that are equivalent when they can be made the same by permutation of their numbers and possible reversal of the string.
Recurrences appear in the papers by Bickle, Eckhoff, and Markenzon et al.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]

Crossrefs

Column 7 of A320750.
The numbers of unlabeled k-paths for k = 2..6 are given in A005418, A001998, A056323, A056324, and A056325, respectively.
The sequences above converge to A103293(n+1).

Programs

  • Mathematica
    LinearRecurrence[{20,-134,200,1502,-6120,-200,35440,-41269,-66380,141454,840,-135912,70560},{1,1,2,4,11,32,117,468,2151,10722,58071,333774,2018321,12678506},26] (* Stefano Spezia, Aug 01 2021 *)

Formula

a(n) = (7^(n-9) + 21*5^(n-9) + 70*4^(n-9) + 315*3^(n-9) + 924*2^(n-9) + 232*7^((n-9)/2) + 700*4^((n-9)/2) + 840*3^((n-9)/2) + 1008*2^((n-9)/2) + 2975)/10080 for n>9 odd;
a(n) = (7^(n-9) + 21*5^(n-9) + 70*4^(n-9) + 315*3^(n-9) + 924*2^(n-9) + 76*7^((n-8)/2) + 280*4^((n-8)/2) + 420*3^((n-8)/2) + 504*2^((n-8)/2) + 2975)/10080 for n even.
a(n) = 20*a(n-1) - 134*a(n-2) + 200*a(n-3) + 1502*a(n-4) - 6120*a(n-5) - 200*a(n-6) + 35440*a(n-7) - 41269*a(n-8) - 66380*a(n-9) + 141454*a(n-10) + 840*a(n-11) - 135912*a(n-12) + 70560*a(n-13) for n > 22. - Stefano Spezia, Aug 01 2021

Extensions

Title changed by Allan Bickle, Apr 05 2022