A345207 Number of (unlabeled) 7-paths with n vertices.
1, 1, 2, 4, 11, 32, 117, 468, 2151, 10722, 58071, 333774, 2018321, 12678506, 82035085, 542520052, 3646124339, 24791545874, 169986552195, 1172526610674, 8122332718341, 56435590886610, 392969320828713, 2740480494041976, 19132214719583207, 133671249471111626
Offset: 9
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]
Links
- Allan Bickle, How to Count k-Paths, J. Integer Sequences, 25 (2022) Article 22.5.6.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- J. Eckhoff, Extremal interval graphs, J. Graph Theory 17 1 (1993), 117-127.
- L. Markenzon, O. Vernet, and P. R. da Costa Pereira, A clique-difference encoding scheme for labelled k-path graphs, Discrete Appl. Math. 156 (2008), 3216-3222.
- Index entries for linear recurrences with constant coefficients, signature (20,-134,200,1502,-6120,-200,35440,-41269,-66380,141454,840,-135912,70560).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{20,-134,200,1502,-6120,-200,35440,-41269,-66380,141454,840,-135912,70560},{1,1,2,4,11,32,117,468,2151,10722,58071,333774,2018321,12678506},26] (* Stefano Spezia, Aug 01 2021 *)
Formula
a(n) = (7^(n-9) + 21*5^(n-9) + 70*4^(n-9) + 315*3^(n-9) + 924*2^(n-9) + 232*7^((n-9)/2) + 700*4^((n-9)/2) + 840*3^((n-9)/2) + 1008*2^((n-9)/2) + 2975)/10080 for n>9 odd;
a(n) = (7^(n-9) + 21*5^(n-9) + 70*4^(n-9) + 315*3^(n-9) + 924*2^(n-9) + 76*7^((n-8)/2) + 280*4^((n-8)/2) + 420*3^((n-8)/2) + 504*2^((n-8)/2) + 2975)/10080 for n even.
a(n) = 20*a(n-1) - 134*a(n-2) + 200*a(n-3) + 1502*a(n-4) - 6120*a(n-5) - 200*a(n-6) + 35440*a(n-7) - 41269*a(n-8) - 66380*a(n-9) + 141454*a(n-10) + 840*a(n-11) - 135912*a(n-12) + 70560*a(n-13) for n > 22. - Stefano Spezia, Aug 01 2021
Extensions
Title changed by Allan Bickle, Apr 05 2022
Comments