cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A345200 G.f. A(x) satisfies: A(x) = x + x^2 * exp(2 * Sum_{k>=1} A(x^k) / k).

Original entry on oeis.org

1, 1, 2, 5, 12, 32, 84, 234, 652, 1872, 5416, 15922, 47188, 141283, 425910, 1293105, 3948080, 12118619, 37367694, 115708111, 359623780, 1121543440, 3508533500, 11006973980, 34620982004, 109157354769, 344928572562, 1092190467567, 3464955417200, 11012117992012
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = x + x^2 Exp[2 Sum[A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; a[n_] := a[n] = (2/(n - 2)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 30}]

Formula

G.f.: x + x^2 / Product_{n>=1} (1 - x^n)^(2*a(n)).
a(n+2) = (2/n) * Sum_{k=1..n} ( Sum_{d|k} d * a(d) ) * a(n-k+2).
a(n) ~ c * d^n / n^(3/2), where d = 3.3437762102302517833309792925121217026126033230718263962128740290952197... and c = 0.3397354606156870289877990463189432389789387070060129709272911771... - Vaclav Kotesovec, Jun 19 2021

A345242 G.f. A(x) satisfies: A(x) = x + x^2 * exp(4 * Sum_{k>=1} A(x^k) / k).

Original entry on oeis.org

1, 1, 4, 14, 52, 205, 832, 3492, 14960, 65322, 289384, 1298064, 5882712, 26897352, 123919576, 574718308, 2681028168, 12571650355, 59222213028, 280139215118, 1330101884932, 6336757979653, 30282375754944, 145124083402256, 697293746743760, 3358385599930269, 16210842955175380
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 27; A[] = 0; Do[A[x] = x + x^2 Exp[4 Sum[A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; a[n_] := a[n] = (4/(n - 2)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 27}]

Formula

G.f.: x + x^2 / Product_{n>=1} (1 - x^n)^(4*a(n)).
a(n+2) = (4/n) * Sum_{k=1..n} ( Sum_{d|k} d * a(d) ) * a(n-k+2).
Showing 1-2 of 2 results.