A345254 Dispersion of A004754, a rectangular array T(n,k) read by downward antidiagonals.
1, 2, 3, 4, 5, 6, 8, 9, 10, 7, 16, 17, 18, 11, 12, 32, 33, 34, 19, 20, 13, 64, 65, 66, 35, 36, 21, 14, 128, 129, 130, 67, 68, 37, 22, 15, 256, 257, 258, 131, 132, 69, 38, 23, 24, 512, 513, 514, 259, 260, 133, 70, 39, 40, 25, 1024, 1025, 1026, 515, 516, 261, 134
Offset: 1
Examples
Northwest corner of {T(n,k)}: k=1 k=2 k=3 k=4 k=5 k=6 n=0: 1, 2, 4, 8, 16, 32, ... n=1: 3, 5, 9, 17, 33, 65, ... n=2: 6, 10, 18, 34, 66, 130, ... n=3: 7, 11, 19, 35, 67, 131, ... n=4: 12, 20, 36, 68, 132, 260, ... ... Northwest corner of {T(n,k)} in base-2: k=1 k=2 k=3 k=4 k=5 k=6 n=0: 1, 10, 100, 1000, 10000, 100000, ... n=1: 11, 101, 1001, 10001, 100001, 1000001, ... n=2: 110, 1010, 10010, 100010, 1000010, 10000010, ... n=3: 111, 1011, 10011, 100010, 1000011, 10000011, ... n=4: 1100,10100, 100100, 1000100, 10000100, 100000100, ... ...
Links
- Clark Kimberling, Interspersions and dispersions, Proceedings of the American Mathematical Society, 117 (1993) 313-321.
- Parker Shectman, A Quilt after Fibonacci, Part 2 of 3: Cohorts, Free Monoids, and Numeration, 2021.
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
Mathematica
(*Simplified Formula*) MatrixForm[Prepend[Table[n + 2^(Floor[Log[2, n]] + k), {n, 1, 4}, {k, 1, 6}], Table[2^(k - 1), {k, 1, 6}]]] (*Branching Formula*) MatrixForm[Prepend[Table[NestList[Function[# + 2^(Floor[Log[2, #]])], n + 2^(Floor[Log[2, n]] + 1), 5], {n, 1, 4}], NestList[Function[# + 2^(Floor[Log[2, #]])], 1, 5]]]
-
PARI
T(n, k) = if (n==0, 2^(k-1), n + 2^(log(n)\log(2) + k)); matrix(7, 7, n, k, n--; T(n, k)) \\ Michel Marcus, Jul 30 2021
Comments