A345297 a(n) is the least k >= 0 such that A331835(k) = n.
0, 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 22, 23, 26, 27, 29, 30, 31, 43, 45, 46, 47, 54, 55, 58, 59, 61, 62, 63, 94, 95, 107, 109, 110, 111, 118, 119, 122, 123, 125, 126, 127, 187, 189, 190, 191, 222, 223, 235, 237, 238, 239, 246, 247, 250, 251, 253, 254, 255
Offset: 0
Examples
We have: n| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ----------+------------------------------------------------------------------ A331835(n)| 0 1 2 3 3 4 5 6 5 6 7 8 8 9 10 11 7 8 9 So a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 3, a(4) = 5, a(5) = 6, a(6) = 7, a(7) = 10, a(8) = 11, a(9) = 13, a(10) = 14, a(11) = 15.
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..2000
- Rémy Sigrist, C program for A345297
Programs
-
C
See Links section.
-
Python
from sympy import prime def p(n): return prime(n) if n >= 1 else 1 def A331835(n): return sum(p(i)*int(b) for i, b in enumerate(bin(n)[:1:-1])) def adict(klimit): adict = dict() for k in range(klimit+1): fk = A331835(k) if fk not in adict: adict[fk] = k n, alst = 0, [] while n in adict: alst.append(adict[n]); n += 1 return alst print(adict(255)) # Michael S. Branicky, Jun 13 2021
Comments