cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345314 Primes that can be constructed by concatenating two squares >= 4.

Original entry on oeis.org

449, 499, 1009, 1699, 2549, 4289, 4441, 4729, 6449, 6481, 8419, 9619, 12149, 14449, 16361, 16529, 16729, 16981, 19681, 21169, 22549, 24019, 25121, 25169, 25841, 28099, 28949, 30259, 34819, 36529, 38449, 41521, 41681, 41849, 42209, 43481, 43721, 43969, 45329, 46889
Offset: 1

Views

Author

Tanya Khovanova, Jun 13 2021

Keywords

Comments

If we allow 1, we get sequence A167535.

Examples

			449 is a prime that is a concatenation of two squares: 4 and 49.
		

Crossrefs

Cf. A167535.

Programs

  • Maple
    zcat:= proc(a,b) 10^(1+ilog10(b))*a+b end proc:
    select(t -> t <= 10^5 and isprime(t), {seq(seq(zcat(a^2,b^2),a=2..100),b=3..1000,2)}); # Robert Israel, Jun 17 2021
  • Mathematica
    Take[Select[Union[Flatten[Table[FromDigits[Join[IntegerDigits[n^2],IntegerDigits[k^2]]], {n, 2, 300}, {k, 2, 300}]]], PrimeQ[#] &], 60]
  • Python
    from sympy import isprime
    def aupto(lim):
      s = list(i**2 for i in range(2, int(lim**(1/2))+2))
      t = set(int(str(a)+str(b)) for a in s for b in s)
      return sorted(filter(isprime, filter(lambda x: x<=lim, t)))
    print(aupto(49000)) # Michael S. Branicky, Jun 13 2021