cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345348 Triangular numbers that in base 2 have the same number of 0's and 1's.

Original entry on oeis.org

10, 153, 210, 595, 666, 820, 2278, 2701, 9045, 9870, 10585, 11476, 12403, 13366, 13861, 14365, 34191, 34716, 35245, 36046, 37675, 37950, 39340, 39621, 40470, 41905, 42195, 42778, 43365, 44551, 45150, 45451, 46665, 48516, 49455, 50086, 50403, 51681, 52003, 52326
Offset: 1

Views

Author

Ctibor O. Zizka, Jun 15 2021

Keywords

Examples

			Triangular number 153 = '10011001' in binary, the number of 1's equals the number of 0's, so 153 is a term.
		

Crossrefs

Intersection of A000217 and A031443.
Cf. A164343.

Programs

  • Mathematica
    Select[Table[n*(n + 1)/2, {n, 0, 330}], Equal @@ DigitCount[#, 2] &] (* Amiram Eldar, Jun 15 2021 *)
  • PARI
    isA031443(n)=2*hammingweight(n)==exponent(n)+1
    list(lim)=my(v=List(),n=4,t); while((t=n*n++/2)<=lim, if(isA031443(t), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Jun 21 2021
    
  • Python
    A345348_list = [n for n in (m*(m+1)//2 for m in range(10**6)) if len(bin(n))-2 == 2*bin(n).count('1')] # Chai Wah Wu, Jun 21 2021

Extensions

More terms from Jinyuan Wang, Jun 15 2021