cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345356 Numbers k coprime to 30 such that ceiling(sqrt(k))^2 - k is a square.

Original entry on oeis.org

1, 49, 77, 91, 121, 143, 169, 187, 209, 221, 247, 289, 299, 323, 361, 391, 437, 493, 529, 551, 589, 667, 713, 841, 851, 899, 961, 1073, 1147, 1189, 1247, 1271, 1333, 1369, 1457, 1517, 1591, 1681, 1739, 1763, 1813, 1849, 1927, 1961, 2009, 2021
Offset: 1

Views

Author

Bill McEachen, Jun 15 2021

Keywords

Comments

Multiples of 2, 3, and 5 are excluded. This is not a subsequence of A087718, since not all terms are semiprimes. Subsequence of A077554 (limited data)? Besides 1, a subsequence of A038510.

Examples

			For k=77, ceiling(sqrt(k)) is 9, so we evaluate 9^2 - 77 = 4, which is a square, so 77 is a term.
Let k=97, 100 - 97 = 3 is not a square and is not a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2000], CoprimeQ[#, 30] && IntegerQ @ Sqrt[Ceiling[Sqrt[#]]^2 - #] &] (* Amiram Eldar, Jun 23 2021 *)
  • PARI
    genit(minn=1,maxx)={arr=List();forstep(w=minn,maxx,2,if(w%5==0||w%6==3,next);z=sqrtint(w-1)+1;if(issquare(z^2-w)>0,listput(arr,w);next));arr}