A345378 Number of terms m <= n, where m is a term in A006497.
0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0
Examples
a(0)=a(1)=0, since the least term in A006497 is 2. a(2)=1 since A006497(0) = 2 is followed in that sequence by 3. a(k)=3 for 3 <= k <= 11 since the first terms of A006490 are {0, 2, 3, 11}.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Dorin Andrica, Ovidiu Bagdasar, and George Cătălin Tųrcąs, On some new results for the generalised Lucas sequences, An. Şt. Univ. Ovidius Constanţa (Romania, 2021) Vol. 29, No. 1, 17-36. See Section 5.3, pp. 33, Table 4.
Programs
-
Mathematica
Block[{a = 3, b = -1, nn = 105, u, v = {}}, u = {0, 1}; Do[AppendTo[u, Total[{-b, a} u[[-2 ;; -1]]]]; AppendTo[v, Count[u, _?(# <= i &)]], {i, nn}]; {Boole[First[u] <= 0]}~Join~v] (* or *) {0}~Join~Accumulate@ ReplacePart[ConstantArray[0, Last[#]], Map[# -> 1 &, #]] &@ LucasL[Range[0, 4], 3] (* Michael De Vlieger, Jun 16 2021 *)
Comments