A345393 Array read by ascending antidiagonals: A(n, k) = n!*[x^(n-1)] Li(-k, 1 - exp(-4*x))/(4*x*cosh(x)), where Li(n, z) is the polylogarithm function.
0, 1, 0, 4, 1, 0, 13, 12, 1, 0, 40, 109, 28, 1, 0, 121, 888, 493, 60, 1, 0, 364, 6841, 7192, 1837, 124, 1, 0, 1093, 51012, 95161, 42840, 6253, 252, 1, 0, 3280, 372709, 1189108, 865081, 220120, 20269, 508, 1, 0, 9841, 2687088, 14331493, 16022100, 6396601, 1040088, 63853, 1020, 1, 0
Offset: 0
Examples
n\k| 0 1 2 3 4 ... ---+------------------------------ 0 | 0 0 0 0 0 ... 1 | 1 1 1 1 1 ... 2 | 4 12 28 60 124 ... 3 | 13 109 493 1837 6253 ... 4 | 40 888 7192 42840 220120 ... ...
Links
- Beáta Bényi and Toshiki Matsusaka, Extensions of the combinatorics of poly-Bernoulli numbers, arXiv:2106.05585 [math.CO], 2021. See p. 9.
- Takao Komatsu, On poly-Euler numbers of the second kind, arXiv:1806.05515 [math.NT], 2018.
Programs
-
Mathematica
A[n_,k_]:=n!Coefficient[Series[PolyLog[-k,1-Exp[-4x]]/(4x Cosh[x]),{x,0,n}],x,n-1]; Flatten[Table[A[n-k,k],{n,0,9},{k,0,n}]]