cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345394 Array read by ascending antidiagonals: A(n, k) = n!*[x^n] Li(-k, 1 - exp(-4*x))/(4*sinh(x)), where Li(n, z) is the polylogarithm function.

Original entry on oeis.org

1, 2, 1, 5, 6, 1, 14, 37, 14, 1, 41, 234, 165, 30, 1, 122, 1513, 1826, 613, 62, 1, 365, 9966, 19689, 10770, 2085, 126, 1, 1094, 66637, 210134, 175465, 55154, 6757, 254, 1, 3281, 450834, 2236365, 2741670, 1287657, 260274, 21285, 510, 1, 9842, 3077713, 23819306, 41809933, 27930182, 8420713, 1167026, 65893, 1022, 1
Offset: 0

Views

Author

Stefano Spezia, Jun 17 2021

Keywords

Examples

			n\k|   0     1      2       3        4 ...
---+----------------------------------
0  |   1     1      1       1        1 ...
1  |   2     6     14      30       62 ...
2  |   5    37    165     613     2085 ...
3  |  14   234   1826   10770    55154 ...
4  |  41  1513  19689  175465  1287657 ...
...
		

Crossrefs

Cf. A000012 (n = 0), A007051 (k = 0), A081188 (k = 1), A305861 (n = 2), A305862 (n = 3), A305863 (n = 4), A316526 (n = 5), A345393.

Programs

  • Mathematica
    A[n_,k_]:=n!Coefficient[Series[PolyLog[-k,1-Exp[-4t]]/(4Sinh[t]),{t,0,n}],t,n]; Flatten[Table[A[n-k,k],{n,0,9},{k,0,n}]]