A345394 Array read by ascending antidiagonals: A(n, k) = n!*[x^n] Li(-k, 1 - exp(-4*x))/(4*sinh(x)), where Li(n, z) is the polylogarithm function.
1, 2, 1, 5, 6, 1, 14, 37, 14, 1, 41, 234, 165, 30, 1, 122, 1513, 1826, 613, 62, 1, 365, 9966, 19689, 10770, 2085, 126, 1, 1094, 66637, 210134, 175465, 55154, 6757, 254, 1, 3281, 450834, 2236365, 2741670, 1287657, 260274, 21285, 510, 1, 9842, 3077713, 23819306, 41809933, 27930182, 8420713, 1167026, 65893, 1022, 1
Offset: 0
Examples
n\k| 0 1 2 3 4 ... ---+---------------------------------- 0 | 1 1 1 1 1 ... 1 | 2 6 14 30 62 ... 2 | 5 37 165 613 2085 ... 3 | 14 234 1826 10770 55154 ... 4 | 41 1513 19689 175465 1287657 ... ...
Links
- Beáta Bényi and Toshiki Matsusaka, Extensions of the combinatorics of poly-Bernoulli numbers, arXiv:2106.05585 [math.CO], 2021. See p. 9.
- Komatsu, Takao Complementary Euler numbers. Period. Math. Hung. 75, No. 2, 302-314 (2017).
- Takao Komatsu, On poly-Euler numbers of the second kind, arXiv:1806.05515 [math.NT], 2018.
Crossrefs
Programs
-
Mathematica
A[n_,k_]:=n!Coefficient[Series[PolyLog[-k,1-Exp[-4t]]/(4Sinh[t]),{t,0,n}],t,n]; Flatten[Table[A[n-k,k],{n,0,9},{k,0,n}]]