A345400 Number of colored set partitions of [n] where (i mod d) identifies the color of i and d is the number of available colors such that within each block the frequency of all colors is equal.
1, 1, 3, 6, 19, 53, 225, 878, 4281, 21212, 117489, 678571, 4238024, 27644438, 191326221, 1383029112, 10490101937, 82864869805, 682358388107, 5832742205058, 51733248275075, 474870253871245, 4507061060486642, 44152005855084347, 445973953222607799
Offset: 0
Keywords
Examples
a(0) = 1: (), the empty partition. a(1) = 1: 1a. a(2) = 3: 1a2b, 1a2a, 1a|2a. a(3) = 6: 1a2b3c, 1a2a3a, 1a2a|3a, 1a3a|2a, 1a|2a3a, 1a|2a|3a. a(4) = 19: 1a2b3c4d, 1a2b3a4b, 1a2b|3a4b, 1a4b|2b3a, 1a2a3a4a, 1a2a3a|4a, 1a2a4a|3a, 1a2a|3a4a, 1a2a|3a|4a, 1a3a4a|2a, 1a3a|2a4a, 1a3a|2a|4a, 1a4a|2a3a, 1a|2a3a4a, 1a|2a3a|4a, 1a4a|2a|3a, 1a|2a4a|3a, 1a|2a|3a4a, 1a|2a|3a|4a. Here the colors a, b, c, ... are used.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
- Wikipedia, Partition of a set
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, add( binomial(n, j)^k*(n-j)*A(j, k), j=0..n-1)/n) end: a:= n-> `if`(n=0, 1, add(A(n/d, d), d=numtheory[divisors](n))): seq(a(n), n=0..28);
-
Mathematica
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Binomial[n, j]^k*(n - j)*A[j, k], {j, 0, n - 1}]/n]; a[n_] := If[n == 0, 1, Sum[A[n/d, d], {d, Divisors[n]}]]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Aug 25 2021, after Alois P. Heinz *)
Comments