cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345409 Numbers that are the sum of an emirp and its reversal.

Original entry on oeis.org

44, 88, 110, 176, 424, 808, 908, 928, 1070, 1090, 1150, 1190, 1312, 1372, 1616, 1676, 1736, 2222, 2332, 2552, 2662, 2992, 3212, 4114, 4334, 4444, 4664, 4774, 4994, 5104, 5324, 5434, 6226, 6776, 6886, 7106, 7436, 8338, 8558, 8998, 9218, 9328, 9548, 10010, 10120, 10450, 10670, 10780, 11000, 11110
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jun 18 2021

Keywords

Examples

			a(3) = 110 is a member because 110 = 37+73 where 37 is an emirp.
		

Crossrefs

Programs

  • Maple
    revdigs:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc:
    f:= proc(n) local r;
    if not isprime(n) then return NULL fi;
    r:= revdigs(n);
    if r > n and isprime(r) then return r+n fi
    end proc:
    S:= map(f, {seq(seq(seq(i*10^d+j,j=1..10^d-1,2),i=[1,3,7,9]),d=1..4)}):
    sort(convert(S,list));
  • Python
    from sympy import isprime, nextprime
    def epgen(start=1, end=float('inf')): # generates unique emirp/prime pairs
        p = nextprime(start-1)
        while p <= end:
            revp = int(str(p)[::-1])
            if p < revp and isprime(revp): yield (p, revp)
            p = nextprime(p)
    def aupto(lim):
        epsums = set(sum(ep) for ep in epgen(1, lim))
        return sorted(filter(lambda x: x<=lim, epsums))
    print(aupto(11111)) # Michael S. Branicky, Jun 18 2021