cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A345415 Table read by upward antidiagonals: Given m, n >= 1, write gcd(m,n) as d = u*m+v*n where u, v are minimal; T(m,n) = u.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 1, -1, 1, 0, 0, 0, 1, 1, 0, 1, 1, -1, -2, 1, 0, 0, -1, 0, 2, 1, 1, 0, 1, 0, 1, -1, 1, -3, 1, 0, 0, 1, 1, 0, -1, -2, 1, 1, 0, 1, -1, -1, 1, -1, 2, 3, -4, 1, 0, 0, 0, 0, -2, 0, 3, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, -1, -3, -2, -3, -5, 1, 0, 0, -1, 1, -1, 1, 0, -1, 2, -2, 4, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2021

Keywords

Comments

The gcd is given in A003989, and v is given in A345416. Minimal means minimize u^2+v^2. We follow Maple, PARI, etc., in setting u=0 and v=1 when m=n. If we ignore the diagonal, the v table is the transpose of the u table.

Examples

			The gcd table (A003989) begins:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2]
[1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1]
[1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4]
[1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1]
[1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2]
[1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1]
[1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8]
[1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1]
[1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1]
[1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 4]
...
The u table (this entry) begins:
[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[0, 0, -1, 1, -2, 1, -3, 1, -4, 1, -5, 1, -6, 1, -7, 1]
[0, 1, 0, -1, 2, 1, -2, 3, 1, -3, 4, 1, -4, 5, 1, -5]
[0, 0, 1, 0, -1, -1, 2, 1, -2, -2, 3, 1, -3, -3, 4, 1]
[0, 1, -1, 1, 0, -1, 3, -3, 2, 1, -2, 5, -5, 3, 1, -3]
[0, 0, 0, 1, 1, 0, -1, -1, -1, 2, 2, 1, -2, -2, -2, 3]
[0, 1, 1, -1, -2, 1, 0, -1, 4, 3, -3, -5, 2, 1, -2, 7]
[0, 0, -1, 0, 2, 1, 1, 0, -1, -1, -4, -1, 5, 2, 2, 1]
[0, 1, 0, 1, -1, 1, -3, 1, 0, -1, 5, -1, 3, -3, 2, -7]
[0, 0, 1, 1, 0, -1, -2, 1, 1, 0, -1, -1, 4, 3, -1, -3]
[0, 1, -1, -1, 1, -1, 2, 3, -4, 1, 0, -1, 6, -5, -4, 3]
[0, 0, 0, 0, -2, 0, 3, 1, 1, 1, 1, 0, -1, -1, -1, -1]
...
The v table (A345416) begins:
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]
[1, -1, 1, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1]
[1, 1, -1, 1, 1, 1, -1, 0, 1, 1, -1, 0, 1, 1, -1, 0]
[1, -2, 2, -1, 1, 1, -2, 2, -1, 0, 1, -2, 2, -1, 0, 1]
[1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 0, 1, 1, 1, -1]
[1, -3, -2, 2, 3, -1, 1, 1, -3, -2, 2, 3, -1, 0, 1, -3]
[1, 1, 3, 1, -3, -1, -1, 1, 1, 1, 3, 1, -3, -1, -1, 0]
[1, -4, 1, -2, 2, -1, 4, -1, 1, 1, -4, 1, -2, 2, -1, 4]
[1, 1, -3, -2, 1, 2, 3, -1, -1, 1, 1, 1, -3, -2, 1, 2]
[1, -5, 4, 3, -2, 2, -3, -4, 5, -1, 1, 1, -5, 4, 3, -2]
[1, 1, 1, 1, 5, 1, -5, -1, -1, -1, -1, 1, 1, 1, 1, 1]
...
		

Crossrefs

Programs

  • Maple
    mygcd:=proc(a,b) local d,s,t; d := igcdex(a,b,`s`,`t`); [a,b,d,s,t]; end;
    gcd_rowu:=(m,M)->[seq(mygcd(m,n)[4],n=1..M)];
    for m from 1 to 12 do lprint(gcd_rowu(m,16)); od;
  • Mathematica
    T[m_, n_] := Module[{u, v}, MinimalBy[{u, v} /. Solve[u^2 + v^2 <= 26 && u*m + v*n == GCD[m, n], {u, v}, Integers], #.#&][[1, 1]]];
    Table[T[m - n + 1, n], {m, 1, 13}, {n, 1, m}] // Flatten (* Jean-François Alcover, Mar 27 2023 *)

A345417 Table read by upward antidiagonals: Given m, n >= 1, write gcd(prime(m),prime(n)) as d = u*prime(m)+v*prime(n) where u, v are minimal; T(m,n) = u.

Original entry on oeis.org

0, 1, -1, 1, 0, -2, 1, -1, 2, -3, 1, 1, 0, -2, -5, 1, -1, -2, 3, 4, -6, 1, 1, 1, 0, -2, -4, -8, 1, -1, 2, 2, -3, -5, 6, -9, 1, 1, -2, -1, 0, 2, 7, -6, -11, 1, -1, -1, -2, -5, 6, 5, 4, 8, -14, 1, -1, 2, 3, 2, 0, -3, -8, -9, 10, -15, 1, 1, -1, -3, -4, -3, 4, 7, 10, 6, -10, -18
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2021

Keywords

Comments

The gcd is 1 unless m=n when it is m; v is given in A345418. Minimal means minimize u^2+v^2. We follow Maple, PARI, etc., in setting u=0 and v=1 when m=n. If we ignore the diagonal, the v table is the transpose of the u table.

Examples

			The u table (this entry) begins:
[0, -1, -2, -3, -5, -6, -8, -9, -11, -14, -15, -18, -20, -21, -23, -26]
[1, 0, 2, -2, 4, -4, 6, -6, 8, 10, -10, -12, 14, -14, 16, 18]
[1, -1, 0, 3, -2, -5, 7, 4, -9, 6, -6, 15, -8, -17, 19, -21]
[1, 1, -2, 0, -3, 2, 5, -8, 10, -4, 9, 16, 6, -6, -20, -15]
[1, -1, 1, 2, 0, 6, -3, 7, -2, 8, -14, -10, 15, 4, -17, -24]
[1, 1, 2, -1, -5, 0, 4, 3, -7, 9, 12, -17, 19, 10, -18, -4]
[1, -1, -2, -2, 2, -3, 0, 9, -4, 12, 11, -13, -12, -5, -11, 25]
[1, 1, -1, 3, -4, -2, -8, 0, -6, -3, -13, 2, 13, -9, 5, 14]
[1, -1, 2, -3, 1, 4, 3, 5, 0, -5, -4, -8, -16, 15, -2, -23]
[1, -1, -1, 1, -3, -4, -7, 2, 4, 0, 15, -14, 17, 3, 13, 11]
[1, 1, 1, -2, 5, -5, -6, 8, 3, -14, 0, 6, 4, -18, -3, 12]
[1, 1, -2, -3, 3, 6, 6, -1, 5, 11, -5, 0, 10, 7, 14, -10]
...
The v table (A345418) begins:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[-1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1]
[-2, 2, 1, -2, 1, 2, -2, -1, 2, -1, 1, -2, 1, 2, -2, 2]
[-3, -2, 3, 1, 2, -1, -2, 3, -3, 1, -2, -3, -1, 1, 3, 2]
[-5, 4, -2, -3, 1, -5, 2, -4, 1, -3, 5, 3, -4, -1, 4, 5]
[-6, -4, -5, 2, 6, 1, -3, -2, 4, -4, -5, 6, -6, -3, 5, 1]
[-8, 6, 7, 5, -3, 4, 1, -8, 3, -7, -6, 6, 5, 2, 4, -8]
[-9, -6, 4, -8, 7, 3, 9, 1, 5, 2, 8, -1, -6, 4, -2, -5]
[-11, 8, -9, 10, -2, -7, -4, -6, 1, 4, 3, 5, 9, -8, 1, 10]
[-14, 10, 6, -4, 8, 9, 12, -3, -5, 1, -14, 11, -12, -2, -8, -6]
[-15, -10, -6, 9, -14, 12, 11, -13, -4, 15, 1, -5, -3, 13, 2, -7]
[-18, -12, 15, 16, -10, -17, -13, 2, -8, -14, 6, 1, -9, -6, -11, 7]
...
		

Crossrefs

A345418 Table read by upward antidiagonals: Given m, n >= 1, write gcd(prime(m),prime(n)) as d = u*prime(m)+v*prime(n) where u, v are minimal; T(m,n) = v.

Original entry on oeis.org

1, -1, 1, -2, 1, 1, -3, 2, -1, 1, -5, -2, 1, 1, 1, -6, 4, 3, -2, -1, 1, -8, -4, -2, 1, 1, 1, 1, -9, 6, -5, -3, 2, 2, -1, 1, -11, -6, 7, 2, 1, -1, -2, 1, 1, -14, 8, 4, 5, 6, -5, -2, -1, -1, 1, -15, 10, -9, -8, -3, 1, 2, 3, 2, -1, 1, -18, -10, 6, 10, 7, 4, -3, -4, -3, -1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2021

Keywords

Comments

The gcd is 1 unless m=n when it is m; u is given in A345417. Minimal means minimize u^2+v^2. We follow Maple, PARI, etc., in setting u=0 and v=1 when m=n. If we ignore the diagonal, the v table is the transpose of the u table.

Examples

			The u table (A345417) begins:
[0, -1, -2, -3, -5, -6, -8, -9, -11, -14, -15, -18, -20, -21, -23, -26]
[1,  0,  2, -2,  4, -4,  6, -6,   8,  10, -10, -12,  14, -14,  16,  18]
[1, -1,  0,  3, -2, -5,  7,  4,  -9,   6,  -6,  15,  -8, -17,  19, -21]
[1,  1, -2,  0, -3,  2,  5, -8,  10,  -4,   9,  16,   6,  -6, -20, -15]
[1, -1,  1,  2,  0,  6, -3,  7,  -2,   8, -14, -10,  15,   4, -17, -24]
[1,  1,  2, -1, -5,  0,  4,  3,  -7,   9,  12, -17,  19,  10, -18,  -4]
[1, -1, -2, -2,  2, -3,  0,  9,  -4,  12,  11, -13, -12,  -5, -11,  25]
[1,  1, -1,  3, -4, -2, -8,  0,  -6,  -3, -13,   2,  13,  -9,   5,  14]
[1, -1,  2, -3,  1,  4,  3,  5,   0,  -5,  -4,  -8, -16,  15,  -2, -23]
[1, -1, -1,  1, -3, -4, -7,  2,   4,   0,  15, -14,  17,   3,  13,  11]
[1,  1,  1, -2,  5, -5, -6,  8,   3, -14,   0,   6,   4, -18,  -3,  12]
[1,  1, -2, -3,  3,  6,  6, -1,   5,  11,  -5,   0,  10,   7,  14, -10]
...
The v table (this entry) begins:
[  1,   1,  1,  1,   1,   1,   1,   1,  1,   1,   1,  1,   1,  1,   1,  1]
[ -1,   1, -1,  1,  -1,   1,  -1,   1, -1,  -1,   1,  1,  -1,  1,  -1, -1]
[ -2,   2,  1, -2,   1,   2,  -2,  -1,  2,  -1,   1, -2,   1,  2,  -2,  2]
[ -3,  -2,  3,  1,   2,  -1,  -2,   3, -3,   1,  -2, -3,  -1,  1,   3,  2]
[ -5,   4, -2, -3,   1,  -5,   2,  -4,  1,  -3,   5,  3,  -4, -1,   4,  5]
[ -6,  -4, -5,  2,   6,   1,  -3,  -2,  4,  -4,  -5,  6,  -6, -3,   5,  1]
[ -8,   6,  7,  5,  -3,   4,   1,  -8,  3,  -7,  -6,  6,   5,  2,   4, -8]
[ -9,  -6,  4, -8,   7,   3,   9,   1,  5,   2,   8, -1,  -6,  4,  -2, -5]
[-11,   8, -9, 10,  -2,  -7,  -4,  -6,  1,   4,   3,  5,   9, -8,   1, 10]
[-14,  10,  6, -4,   8,   9,  12,  -3, -5,   1, -14, 11, -12, -2,  -8, -6]
[-15, -10, -6,  9, -14,  12,  11, -13, -4,  15,   1, -5,  -3, 13,   2, -7]
[-18, -12, 15, 16, -10, -17, -13,   2, -8, -14,   6,  1,  -9, -6, -11,  7]
...
		

Crossrefs

A347735 Square array T(n, k), n, k > 0, read by antidiagonals; let b be the function that associates to any pair of integers (u, v) the Bézout coefficients (x, y) as produced by the extended Euclidean algorithm (u*x + v*y = gcd(u, v)); T(n, k) is the number of iterations of b when starting from (n, k) needed to obtain a unit vector.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1
Offset: 1

Views

Author

Rémy Sigrist, Sep 11 2021

Keywords

Comments

For n, k > 0, b(n, k) = (A345415(n, k), A345416(n, k)).

Examples

			Array T(n, k) begins:
  n\k|  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15
  ---+---------------------------------------------------
    1|  1  1  1  1  1  1  1  1  1   1   1   1   1   1   1
    2|  1  1  2  1  2  1  2  1  2   1   2   1   2   1   2
    3|  1  2  1  2  2  1  2  2  1   2   2   1   2   2   1
    4|  1  1  2  1  2  2  2  1  2   2   2   1   2   2   2
    5|  1  2  2  2  1  2  3  3  2   1   2   3   3   2   1
    6|  1  1  1  2  2  1  2  2  2   2   2   1   2   2   2
    7|  1  2  2  2  3  2  1  2  3   3   3   3   2   1   2
    8|  1  1  2  1  3  2  2  1  2   2   3   2   3   2   2
    9|  1  2  1  2  2  2  3  2  1   2   3   2   3   3   2
   10|  1  1  2  2  1  2  3  2  2   1   2   2   3   3   2
		

Crossrefs

Programs

  • PARI
    T(n,k) = { for (v=0, oo, if (n^2+k^2<=1, return (v), [n,k]=gcdext(n,k)[1..2])) }

Formula

T(n, k) = T(k, n).
T(n, n) = 1.
T(m*n, m*k) = T(n, k) for any m > 0.
Showing 1-4 of 4 results.